Occupational Analysis and Job Structures Mary Ann Statman, Monica Gribben, Dick A. Harris, and Gene R. Hoffman Human Resources Research Organization Selection and Assignment Research Unit Michael G. Rumsey, Chief February 1996 19960604 071 United States Army Research Institute for the Behavioral and Social Sciences Approved for public release; distribution is unlimited. # U.S. ARMY RESEARCH INSTITUTE FOR THE BEHAVIORAL AND SOCIAL SCIENCES A Field Operating Agency Under the Jurisdiction of the Deputy Chief of Staff for Personnel EDGAR M. JOHNSON Director Research accomplished under contract for the Department of the Army Human Resources Research Organization Technical review by Jay M. Silva Clinton B. Walker #### **NOTICES** **DISTRIBUTION:** This report has been cleared for release to the Defense Technical Information Center (DTIC) to comply with regulatory requirements. It has been given no primary distribution other than to DTIC and will be available only through DTIC or the National Technical Information Service (NTIS). FINAL DISPOSITION: This report may be destroyed when it is no longer needed. Please do not return it to the U.S. Army Research Institute for the Behavioral and Social Sciences. **NOTE**: The views, opinions, and findings in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other authorized documents. | 2. REPORT TYPE 1996, February 2. REPORT TYPE Final 2. REPORT TYPE Final 4. TITLE AND SUBTITLE Occupational Analysis and Job Structures 3. AUTHOR(S) Mary Ann Statman, Monica Gribben, Dick A. Harris, and Gene R. Hoffman 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Human Resources Research Organization (HumRRO) 66 Canal Center Plaza, Suite 400 Alexandria, VA 22314 3. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) U.S. Army Research Institute for the Behavioral and Social Sciences ATTN: PERI-RS 5001 Eisenhower Avenue Alexandria, VA 22333-5600 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES COR: Gabriel P. Intano 14. ABSTRACT (Maximum 200 words): The objective of this study was to review the major issues and trends in job | MDA903-93-C-(5b. PROGRAM EL 0602785A 5c. PROJECT NUM A790 5d. TASK NUMBER 5901 5e. WORK UNIT N C06 8. PERFORMING OF Final Report 10. MONITOR ACE ARI 11. MONITOR REF | PR GRANT NUMBER D089 EMENT NUMBER MBER R DUMBER ORGANIZATION REPORT NUMBER FR-PRD-94-28 RONYM | | | | |--|---|--|--|--|--| | Occupational Analysis and Job Structures 3. AUTHOR(S) Mary Ann Statman, Monica Gribben, Dick A. Harris, and Gene R. Hoffman 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Human Resources Research Organization (HumRRO) 66 Canal Center Plaza, Suite 400 Alexandria, VA 22314 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) U.S. Army Research Institute for the Behavioral and Social Sciences ATTN: PERI-RS 5001 Eisenhower Avenue Alexandria, VA 22333-5600 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES COR: Gabriel P. Intano 14. ABSTRACT (Maximum 200 words): The objective of this study was to review the major issues and trends in job 1 | MDA903-93-C-(5b. PROGRAM EL 0602785A 5c. PROJECT NUM A790 5d. TASK NUMBER 5901 5e. WORK UNIT N C06 8. PERFORMING OF Final Report 10. MONITOR ACE ARI 11. MONITOR REF | DO89 LEMENT NUMBER WBER R JUMBER ORGANIZATION REPORT NUMBER FR-PRD-94-28 RONYM | | | | | Mary Ann Statman, Monica Gribben, Dick A. Harris, and Gene R. Hoffman 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Human Resources Research Organization (HumRRO0 66 Canal Center Plaza, Suite 400 Alexandria, VA 22314 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) U.S. Army Research Institute for the Behavioral and Social Sciences ATTN: PERI-RS 5001 Eisenhower Avenue Alexandria, VA 22333-5600 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES COR: Gabriel P. Intano 14. ABSTRACT (Maximum 200 words): The objective of this study was to review the major issues and trends in job 1 | 5b. PROGRAM EL 0602785A 5c. PROJECT NUM A790 5d. TASK NUMBER 5901 5e. WORK UNIT N C06 8. PERFORMING OF Final Report 10. MONITOR ACE ARI | MBER R IUMBER ORGANIZATION REPORT NUMBER FR-PRD-94-28 RONYM | | | | | Mary Ann Statman, Monica Gribben, Dick A. Harris, and Gene R. Hoffman 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Human Resources Research Organization (HumRRO0 66 Canal Center Plaza, Suite 400 Alexandria, VA 22314 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) U.S. Army Research Institute for the Behavioral and Social Sciences ATTN: PERI-RS 5001 Eisenhower Avenue Alexandria, VA 22333-5600 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES COR: Gabriel P. Intano 14. ABSTRACT (Maximum 200 words): The objective of this study was to review the major issues and trends in job 1 | 0602785A 5c. PROJECT NUM A790 5d. TASK NUMBER 5901 5e. WORK UNIT N C06 8. PERFORMING OF Final Report 10. MONITOR ACE ARI 11. MONITOR REF | MBER R JUMBER ORGANIZATION REPORT NUMBER FR-PRD-94-28 RONYM | | | | | Mary Ann Statman, Monica Gribben, Dick A. Harris, and Gene R. Hoffman 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Human Resources Research Organization (HumRRO0 66 Canal Center Plaza, Suite 400 Alexandria, VA 22314 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) U.S. Army Research Institute for the Behavioral and Social Sciences ATTN: PERI-RS 5001 Eisenhower Avenue Alexandria, VA 22333-5600 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES COR: Gabriel P. Intano 14. ABSTRACT (Maximum 200 words): The objective of this study was to review the major issues and trends in job 19. | A790 5d. TASK NUMBER 5901 5e. WORK UNIT N C06 8. PERFORMING OF Timal Report 10. MONITOR ACE ARI 11. MONITOR REF | R IUMBER ORGANIZATION REPORT NUMBER FR-PRD-94-28 RONYM | | | | | Gene R. Hoffman 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Human Resources Research Organization (HumRRO) 66 Canal Center Plaza, Suite 400 Alexandria, VA 22314 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) U.S. Army Research Institute for the Behavioral and Social Sciences ATTN: PERI-RS 5001 Eisenhower Avenue Alexandria, VA 22333-5600 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES COR: Gabriel P. Intano 14. ABSTRACT (Maximum 200 words): The objective of this study was to review the major issues and trends in job 1 | 5901 5e. WORK UNIT N C06 8. PERFORMING OF Final Report 10. MONITOR ACE ARI 11. MONITOR REF | ORGANIZATION REPORT NUMBER FR-PRD-94-28 RONYM | | | | | Human Resources Research Organization (HumRRO) 66 Canal Center Plaza, Suite 400 Alexandria, VA 22314 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) U.S. Army Research Institute for the Behavioral and Social Sciences ATTN: PERI-RS 5001 Eisenhower Avenue Alexandria, VA 22333-5600 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES COR: Gabriel P. Intano 14. ABSTRACT (Maximum 200 words): The objective of this study was to review the major issues and trends in job 1 | C06 8. PERFORMING of Final Report 10. MONITOR ACE ARI 11. MONITOR REF | ORGANIZATION REPORT NUMBER FR-PRD-94-28 RONYM | | | | | Human Resources Research Organization (HumRRO) 66 Canal Center Plaza, Suite 400 Alexandria, VA 22314 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) U.S. Army Research Institute for the Behavioral and Social Sciences ATTN: PERI-RS 5001 Eisenhower Avenue Alexandria, VA 22333-5600 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES COR: Gabriel P. Intano 14. ABSTRACT (Maximum 200 words): The objective of this study was to review the major issues and trends in job 1 | Final Report 10. MONITOR ACE ARI 11. MONITOR REF | FR-PRD-94-28 | | | | | Alexandria, VA 22314 2. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) U.S. Army Research Institute for the Behavioral and Social Sciences ATTN: PERI-RS 5001 Eisenhower Avenue Alexandria, VA 22333-5600 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES COR: Gabriel P. Intano 14. ABSTRACT (Maximum 200 words): The objective of this study was to review the major issues and trends in job 1 | 10. MONITOR ACE ARI 11. MONITOR REF | RONYM | | | | | U.S. Army Research Institute for the Behavioral and Social Sciences ATTN: PERI-RS
5001 Eisenhower Avenue Alexandria, VA 22333-5600 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES COR: Gabriel P. Intano 14. ABSTRACT (Maximum 200 words): The objective of this study was to review the major issues and trends in job 1 | ARI 11. MONITOR REF | | | | | | U.S. Army Research Institute for the Behavioral and Social Sciences ATTN: PERI-RS 5001 Eisenhower Avenue Alexandria, VA 22333-5600 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES COR: Gabriel P. Intano 14. ABSTRACT (Maximum 200 words): The objective of this study was to review the major issues and trends in job 1 | 11. MONITOR REF | PORT NUMBER | | | | | Alexandria, VA 22333-5600 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES COR: Gabriel P. Intano 14. ABSTRACT (Maximum 200 words): The objective of this study was to review the major issues and trends in job 1 | | PORT NUMBER | | | | | Approved for public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES COR: Gabriel P. Intano 14. ABSTRACT (Maximum 200 words): The objective of this study was to review the major issues and trends in job to | | 11. MONITOR REPORT NUMBER | | | | | Approved for public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES COR: Gabriel P. Intano 14. ABSTRACT (Maximum 200 words): The objective of this study was to review the major issues and trends in job to | Research Note 96-25 | | | | | | COR: Gabriel P. Intano 14. ABSTRACT (Maximum 200 words): The objective of this study was to review the major issues and trends in job 1 | | | | | | | 14. ABSTRACT (Maximum 200 words): The objective of this study was to review the major issues and trends in job is | | | | | | | The objective of this study was to review the major issues and trends in job to | | | | | | | | | | | | | | quality of job cluster structures. The proposed cluster evaluation method convalidation, (2) consistency analysis, (3) external comparisons and (4) validation, (2) consistency analysis, (3) external comparisons and (4) validation containing job analysis information were used to test the evaluation method ward hierarchical cluster analysis (HCA), (2) average linkage HCA, and (3) constructing job clusters, evaluating their consistency across clustering proceduith other job family structures. It can be applied to any cluster structure evaluating new job families, developing task clusters for structuring and recluster structures. | nsists of the following
tion against an exter
. Clusters were formation
() K-means partitional
edures and samples,
aluation problem, sp | g four components: (1) internal mal criterion. Four Army databases ed by three empirical procedures: (1) al clustering. The method was useful in and in making external comparisons ecifically, in the present context, to | | | | | 15. SUBJECT TERMS | | | | | | | Job family Cluster analysis Task analysis | Job analysis | | | | | | Numberical taxonomy Job clustering SECURITY CLASSIFICATION OF 19. LIMITATION OF | | | | | | 173 OF PAGES (Name and Telephone Number) ABSTRACT Unlimited 18. THIS PAGE Unclassified 16. REPORT Unclassified 17. ABSTRACT Unclassified As part of its Innovative Ideas From Industry Program, the Selection and Assignment Research Unit (SARU) of the Manpower and Personnel Research Division (MPRD) at the U.S. Army Research Institute for the Behavioral and Social Sciences (ARI) contracted with the Human Resources Research Organization to develop a multipurpose method for assessing and classifying Military Occupational Specialties (MOS) and their associated duties along a variety of dimensions. The clustering of MOS, and their duties and tasks, is an important tool for simplifying the design of personnel management processes, including selection and classification procedures. However, there is an absence of research on techniques for evaluating the quality of job structures. This report describes a method, developed and tested in this contract, for evaluating classifications created for a variety of purposes. The approach can be employed in basic and applied studies to assess the quality of job structures. ZITA M. SIMUTIS Deputy Director (Science and Technology) EDGAR M. JOHNSON Director #### ACKNOWLEDGMENTS We would like to thank the Contracting Officer's Representative, Gabriel P. Intano, for his ideas and direction in this effort. We also would like to thank Ric Blacksten for his help in conceptualizing the problem and in searching for methods of representing job clusters, and Paul J. Sticha for his thoughts on interpreting the results. #### EXECUTIVE SUMMARY ### Research Requirement: This project had two objectives. The first was to study the major issues and trends in job clustering research. The second was to develop a method for evaluating the quality of job family structures and for comparing alternative clusters developed for different purposes (e.g., personnel classification or career development). Phase 1 of the study provided the background for developing the cluster evaluating method. The job family and cluster analysis literatures were reviewed, and the Army job family structures, developed for both operational and research purposes, were described. The literature review found that no formal cluster validation methods exist for studying applied research questions where the true cluster structure of the data is unknown. Phase 2 involved developing and testing a method to validate new job families and to assess the quality of existing cluster structures. The core research question underlying the method was how to reconcile the differences in the configurations of job families found in the literature and within the Army. #### Procedure: The proposed cluster evaluation method consists of a set of tools (analytic procedures and indexed) that can be used in both basic research and applied studies, and includes the following components: (1) internal validation, (2) consistency analysis, (3) external comparisons, and (4) validation against an external criterion. Internal validation of a cluster structure involves identifying the number and composition of clusters that provides the best representation of the underlying relationships among the objects. Consistency analysis is a replication method of evaluating whether the observed cluster structure is the true structure and involves comparison of groups across clustering procedures or samples. External comparisons involve evaluating the congruence of cluster solutions obtained from different sources of data. External validation, the investigation of which was beyond the scope of this study, is the assessment of the usefulness of job clusters for a specific personnel process, e.g., performance appraisal. Four existing Army databases containing job analysis information were used to test the evaluation method. Clusters were formed by three empirical procedures: (1) Ward hierarchical cluster analysis (HCA), (2) average linkage HCA, and (3) K-means partitional clustering. A large number of solutions were examined for each procedure in each database. Two internal validity indexes were used to select cluster solutions that provided the best recovery of the relationships among the jobs. Two types of consistency analysis were conducted. The first compared pairs of cluster solutions produced by alternative procedures in two of the four databases. The second was a double cross-validation procedure that compared the cluster structures of cross-samples in one of the databases. The external analyses measured agreement between job families based on different types of job descriptors and between the empirical clusters and the Army Aptitude Area (AA) job families. ### Findings: The internal validation procedure selected cluster solutions that were moderately to highly consistent across cluster procedures within a particular database. Further, the results were consistent with previous research on the same databases. In contrast, the cross-validation procedure found that the clusters were quite different across samples. The discrepancies may be due to the presence of overlapping families containing jobs that fit into more than one cluster. The external comparisons showed little congruence in the clusters of different databases and in the empirical and Army AA job families. ### Utilization of Findings: The proposed method was useful in constructing job clusters, evaluating their consistency across clustering procedures and samples, and making external comparisons with other job family structures. External validation of cluster structures against a relevant criterion is also an important component of the evaluation method, but was beyond the scope of the present study. The main limitation of the method is the absence of statistical tests for all but one of the three indexes we examined. This was partially overcome by the consistency analyses. Further, two approaches were suggested for developing sampling distributions of the internal and external validity indexes. The proposed cluster evaluation method can be applied to any cluster evaluation problem, specifically, constructing new job families, developing task clusters for structuring and restructuring jobs, and evaluating the quality of existing cluster structures. The results suggest that further research is needed to evaluate the Army AA and Career Management Fields. ### OCCUPATIONAL ANALYSIS AND JOB STRUCTURES ### CONTENTS | | Page | |----------------------------|---| | CHAPTER I - | INTRODUCTION 1 | | Army J | of the Job Family Research | | CHAPTER II | - METHOD | | Cluste
Number
Cluste | | | CHAPTER III | - RESULTS 25 | | Consis | al Validity | | CHAPTER IV | - DISCUSSION AND CONCLUSIONS | | Cluste
Extern
Limita | al Validity | |
REFERENCES | 45 | | APPENDIX A. | MOS TITLES, APTITUDE AREAS AND CAREER MANAGEMENT FIELDS | | В. | WARD HIERARCHICAL CLUSTER ANALYSIS OF DOT DATA B1 | | С. | AVERAGE LINKAGE HIERARCHICAL CLUSTER ANALYSIS OF DOT DATA | | D. | K-MEANS CLUSTER ANALYSIS OF DOT DATA | | E. | WARD HIERARCHICAL CLUSTER ANALYSIS OF PROJECT A DATA | | | | Pa | .ge | |----------|-----|--|-----| | APPENDIX | F. | AVERAGE LINKAGE HIERARCHICAL CLUSTER ANALYSIS OF PROJECT A DATA | F1 | | | G. | WARD HIERARCHICAL CLUSTER ANALYSIS OF SYNTHETIC VALIDITY OJI DATA | G1 | | | н. | AVERAGE LINKAGE HIERARCHICAL CLUSTER ANALYSIS OF SYNTHETIC VALIDITY OJI DATA | Н1 | | | I. | K-MEANS CLUSTER ANALYSIS OF SYNTHETIC VALIDITY OJI DATA | I1 | | | J. | WARD HIERARCHICAL CLUSTER ANALYSIS OF SYNTHETIC VALIDITY CTI DATA | J1 | | | к. | AVERAGE LINKAGE HIERARCHICAL CLUSTER ANALYSIS OF SYNTHETIC VALIDITY CTI DATA | K1 | | | L. | K-MEANS CLUSTER ANALYSIS OF SYNTHETIC VALIDITY CTI DATA | L1 | | | | LIST OF TABLES | | | Table 1. | Enl | listed Career Management Fields | 12 | | 2. | Arm | y Aptitude Areas | 13 | | 3. | Enl | isted DoD Occupational Codes | 14 | | 4. | Met | ber of Clusters Selected by Three Cluster Analysis hods for DOT, Project A, and Synthetic Validity a Bases | 26 | | 5. | | d Values Comparing DOT Cluster Structures Across ster Analysis Methods | 27 | | 6. | | d Values Comparing Project A Cluster Structures coss Cluster Analysis Methods | 27 | | 7. | | d Contingency Table Comparing DOT Ward and Leans Solutions | 28 | | 8. | | d Contingency Table Comparing DOT Ward and rage Linkage Solutions | 29 | | | Page | |---|---| | | Rand Contingency Table Comparing DOT Average Linkage and K-Means Solutions 29 | | | Rand Contingency Table Comparing Project a Ward and Average Linkage Solutions | | C | Rand Values Comparing Sample One and Sample Two Cluster Solutions in DOT Double Cross-Validation Analysis | | | Rand Values Comparing DOT Empirical Cluster Solutions With Nine Army Aptitude Area Job Families | | | Rand Values Comparing Project A Empirical Luster Solutions With Nine Army Aptitude Area Job Families 34 | | | Rand Contingency Table Comparing DOT Ward and Army Aptitude Area Job Families | | | Rand Values Comparing DOT and Project A Cluster Structures | | | LIST OF FIGURES | | | Number of clusters in DOT population and cross samples one and two by cluster analysis method | ### OCCUPATIONAL ANALYSIS AND JOB STRUCTURES #### CHAPTER 1 #### INTRODUCTION This project had two objectives. The first was to study the major issues and trends in job clustering research. The second was to develop a method for evaluating job family structures that would account for the numerous clustering techniques available, and the variety of purposes for which job families are used in personnel psychology. This report provides the results of the study. Chapter One presents a review of the job family literature, and a description of Army job family structures. Chapter Two describes the proposed cluster evaluation method. Chapters Three and Four present the results and discussion, respectively, of the application of this method to four existing Army data bases of job description information. ### Review of Job Family Research Pearlman published a comprehensive review of job family research in 1980 that made several contributions to the literature. First, he presented a hierarchical classification of the content of work, placing job families at the most global level of analysis. His taxonomy begins at the molecular level with tasks and moves to more general positions, jobs, occupations and job families. He defined job family as a group of two or more jobs that are similar in either worker characteristics or job performance requirements. Second, Pearlman (1980) presented a broad analytical framework for directing future research by identifying three basic issues that must be addressed in job family (or any classification), research: 1) the purposes for which job families are used, 2) the content of the groups, and 3) the clustering procedures. Third, his review of studies in public and private sector organizations demonstrated that job families support most of the basic personnel management procedures: vocational guidance, recruiting and selection, military personnel classification, training curriculum design, job evaluation, performance appraisal, career planning and development, and personnel research. Harvey (1986) conducted a second review of the job family literature. He emphasized the procedures for forming job clusters, while Pearlman (1980) focused more on the content and purposes of job families. Harvey observed that the grouping of jobs into families is essentially a data reduction strategy that can improve our understanding of the structure of work by reducing the complexity of the problem. Further, the development of job families is a tool for simplifying the design of personnel procedures. Harvey (1991) pointed out that the important question in job classification research is not whether jobs are similar or different in absolute terms, but on which dimensions they are similar and on which they differ. Both Pearlman (1980) and Harvey (1986), reviewing much the same literature, found that the number and composition of job families varied according to the choice of job analysis data, the clustering method, and the personnel procedure. Pearlman concluded that the purpose for which job families are formed must guide the choice of the job descriptor and the clustering procedure. Harvey (1991) stated that the goal of the development process should be to determine which jobs can be treated interchangeably for a given purpose. Sackett (1988) added to the discussion by stressing the need for validating job family structures against criteria related to specific personnel procedures (Pearlman, 1980, made this point earlier). He described the task of the personnel psychologist this way: The questions left unanswered are: Given that an appropriate job descriptor has been chosen, how large a difference between jobs on the chosen descriptor is needed to have a significant impact on the criterion of interest? In a selection setting, how different do jobs have to be before validity coefficients are affected? In a training situation, how different do jobs have to be before separate training programs are required? In a performance appraisal situation, how different do jobs have to be before separate performance ratings forms need to be constructed? Thus job clustering can only be meaningfully done with reference to an external criterion. (pp. 51-52) Job family research has received less attention than other areas of personnel psychology. For example, only two published studies were found since Harvey's 1986 review. Despite Pearlman's (1980) attempt to place job family research on a firm theoretical footing, most studies have focused on examining methodological issues, e.g., the effect of alternative job descriptors on cluster structure. Zimmerman, Jacobs and Farr (1982) observed that the development of methods for constructing reliable, valid cluster structures is a necessary component of theory building. However, few attempts have been made to integrate research findings (Pearlman, 1980 and Sackett, 1988, are exceptions), as the basis for formulating a conceptual framework for job family research. Pearlman's statement that, "A central and long-standing problem in the study of human work performance has been the lack of a comprehensive system for classifying and interrelating performance-related variables" (p.1), still holds today. The objective of the present research review is to describe alternative strategies for developing and validating job families, with emphasis on the major problems encountered, trends in the findings, and cumulative knowledge gained that would be useful for guiding future research. The job family literature was divided into three broad streams of research. The first group of studies describe the formation of job families for alternative personnel processes, e.g., selection and performance appraisal. The second group investigated the effect of varying the type of job descriptor on the number and composition of job families. The last group of studies involved evaluation of alternative clustering methods. ## Clustering Jobs to Support Alternative Personnel Procedures Much of the research within the last 15 to 20 years has been conducted in the private sector, and has responded to the need for legally defensible selection procedures. Selection involves grouping jobs for one of two objectives. The first is to group similar jobs together to obtain an adequate sample size for test validation. The second objective is to evaluate whether test validity generalizes to a new job not included in the study, or to similar jobs within or across organizations (Pearlman, 1980). Cornelius, Schmidt & Carron (1984) stated that the formation of job families is one of the most important concerns in validity generalization research. Further, they noted that there is a basic discrepancy between scientific and legal guidelines for the development of job clusters. The Uniform Guidelines on Employee Selection Procedures (1980) recommend that an elaborate, behaviorally-oriented job analysis procedure be conducted to substantiate job similarities. In contrast, Cornelius et al. showed that global ratings of job similarity may be adequate to group jobs for validity generalization in many situations. Further, other studies (e.g., Sackett, Cornelius & Carron, 1981, and Stutzman, 1983), indicate that emphasis on work behaviors may not be appropriate for all types of selection problems. Mobley and Ramsay (1973) conducted one of the early selection/validity generalization studies using the
Ward hierarchical cluster analysis (HCA) procedure to cluster jobs in two chemical plants. HCA refers to a group of clustering algorithms that sequentially agglomerate objects (in our case jobs), into nested clusters based on some criterion of similarity. The process begins with every job as a cluster. The clusters are successively grouped together to form larger, more heterogeneous clusters, until only one cluster remains. The output of HCA procedures is a sequence of nested, nonoverlapping groups. A large number of clustering criteria have been developed, but no one approach has been found to be best for all situations (Jain & Dubes, 1988). Each algorithm imposes a specific definition of a cluster on the data. The Ward procedure forms clusters that minimize the within-group sum of squares, or error sum of squares (Aldenderfer & Blashfield, 1984). Another hierarchical procedure, called the average linkage algorithm, forms groups by comparing two clusters in terms of the average distance between all pairs of objects. Mobley and Ramsay (1973) clustered all jobs (about 60 per plant) across all levels in the two plants. The job descriptors were 15 worker attributes and 5 job characteristics. They obtained 4 and 6 clusters, respectively, in the two plants. The clusters varied in complexity and level of responsibility, and were consistent across the plants. The researchers concluded that the Ward procedure was useful for grouping jobs to increase sample size and for validity generalization. Taylor and Colbert (Colbert & Taylor, 1978; Taylor, 1978; Taylor & Colbert, 1978) conducted a three part validity generalization study for a national insurance company. Job analysis information was obtained with the worker-oriented Position Analysis Questionnaire (PAQ) and a company-specific PAQ. The Ward minimum variance procedure, combined with a reassignment process, was used for clustering. One of the major weaknesses of hierarchical clustering algorithms is that once an object is assigned to a cluster at some level in the hierarchy, it cannot move to another cluster. As objects are added at higher levels, the cluster centroids will change and some of the objects may be closer to other groups. The reassignment process alleviates this potential weakness. Two samples of jobs were obtained. The first included 76 jobs in 23 locations. Six fairly global job families, based on the PAQ dimensions, were obtained. The reliability of the cluster structure was assessed by reclustering the jobs using PAQ ratings from a second sample of SMEs. Eightynine percent of the jobs were placed in the same job clusters. The second sample consisted of 325 jobs at all levels below vice president in the 23 regional offices. Company-specific PAQ-type job descriptors were introduced in an effort to obtain more homogeneous and organizationally meaningful job families. The second study obtained 13 homogeneous clusters. However, 14% of the jobs were isolates or could be clustered into more than one job family. Further, the consistency of the groups was reduced to a 58% hit rate. The final component of the research involved the development of selection batteries for 3 of the 13 clerical job families from the second sample. Colbert and Taylor (1978) found substantial support for generalizing validities within the job families. First, the cross-sample predictive validities within job families were statistically and practically significant, averaging around R = .30. Second, different combinations of predictors were valid for different job families. Third, the job families were found to moderate validity, i.e., the predictive validity coefficients of the test batteries were larger within job clusters than across. Alley, Treat, and Black (1988) tested the Ward HCA procedure for grouping Air Force jobs into families used for military personnel classification. They clustered the predicted performance scores of Air Force enlisted personnel in over two hundred specialties. The performance estimates were obtained by regressing final training grades against the 10 tests of the Armed Services Vocational Aptitude Battery (ASVAB). Six job families were obtained. Four of the clusters matched the existing Air Force families labeled Mechanical, Administrative, General and Electronics. One of the additional families was a generalist cluster that required high scores on all 10 tests. The second new grouping was a heterogeneous cluster of jobs for which the ASVAB was not a good measure of training performance. Although they did not validate the clusters against a measure of classification efficiency, Alley et al. (1988) found that the least squares estimates of training performance for the new configuration of 6 job families provided significantly greater predictive validity than a single common equation. Ballentine, Cunningham, and Wimpee (1992) evaluated the usefulness of a multipurpose job analysis instrument, the General Work Inventory (GWI), for forming career fields. The GWI includes broad worker- and job-oriented items, and was designed as an alternative, and supplement, to task information obtained from the Comprehensive Occupational Data Analysis Programs (CODAP) (Christal & Weissmuller, 1988). Twenty-one clusters, which accounted for 90 percent of the jobs, were obtained with the Ward HCA procedure. The quality of the job clusters was evaluated by measuring the stability of the solution through cross-validation. Further, external validity was assessed by comparing the new clusters to the Air Force's existing career fields. The authors (Ballentine et al., 1992) found meaningful, stable clusters, but low overlap with the existing career fields. The last finding calls into question the use of a multipurpose job analysis inventory for developing a job family structure for a specific purpose, e.g., career guidance. Several other recent studies have examined job families in military settings. Research using Army data is described in the section on Army job families. A study conducted for the Navy is discussed in the next section. A group of studies published in the late 1970's and early 1980's attempted to develop what Harvey (1986) refers to as inferential job clustering procedures. The objective of these methods, which include analysis of variance (ANOVA) and multivariate analysis of variance (MANOVA), was to provide a basis for evaluating the statistical significance of differences in job clusters. The inferential clustering procedures were developed to overcome two limitations of hierarchical and partitional clustering algorithms, which do not have built-in methods for statistical significance testing. First, as noted by Jain and Dubes (1988), "Clustering methods have the nasty habit of creating clusters in data even when no natural clusters exist, so hierarchies and [partitional] clusterings must be viewed with extreme suspicion" (p. 75). Second, these algorithms determine the relative, not absolute, similarity, among objects (Sackett, 1988). These limitations are particularly serious when attempting to develop job families for defensible testing and performance appraisal systems. Inferential clustering procedures received a great deal of attention as potential solutions to the problems, but have faded from the literature due to their serious weaknesses. Arvey and Mossholder (1977) proposed using two-way ANOVA with repeated measures to group jobs into job families. The levels of the first factor are the job descriptors, the levels of the second factor are the jobs. Multiple raters nested within jobs form the third factor. The jobs main effect indicates whether there are mean differences in the jobs collapsed across job descriptors. If the jobs main effect is not significant, then the jobs form a single job family. If it is significant, then post hoc comparisons are used to identify job families. The jobs x descriptors interaction provides information on the pattern of job analysis dimensions that accounts for the differences in job means. Lissitz, Mendoza, Huberty and Marlos (1979) criticized the ANOVA approach saying that it is unreasonable to treat job descriptors as levels of a single independent variable, instead of as separate dimensions. They proposed a MANOVA design in which the job analysis items are individual dependent variables. Arvey, Maxwell and Mossholder (1979), and Lee and Mendoza (1981), refined the discussion by describing the strengths and limitations of both ANOVA and MANOVA, and identifying the conditions under which each procedure would be most appropriate. Arvey, Maxwell, Gutenberg, and Camp (1981) later conducted a Monte Carlo study of the ANOVA approach and found that omega-squared estimates for the jobs x descriptors interaction were more useful than statistical significance tests for detecting differences in jobs. Despite the original appeal of the inferential procedures for job clustering, numerous criticisms have been raised about their efficacy for this purpose (Hanser, Mendel, & Wolins, 1979; Harvey, 1986; McIntyre & Farr, 1979). The most important limitation of the ANOVA approach was mentioned above, i.e., the assumption that the job analysis dimensions are levels of a single variable. Another problem with both techniques is that the capacity for finding significant differences is partly a function of the power of the test. In other words, with large sample sizes even small differences will be significant, while with small samples true differences may go undetected. Finally, the procedures are highly impractical with more than a few jobs, because the clustering is done by the researcher through visual inspection of the ANOVA tables for n(n-1)/2 pairs of jobs (where n is the number of jobs). This process is handled quantitatively by hierarchical and partitional clustering algorithms. Cornelius, Carron and Collins (1979) developed a different approach to estimating the statistical differences in clusters by following a hierarchical
cluster analysis with discriminant analysis. Although this approach is intuitively appealing, it has also been criticized. Numerical taxonomists state that conducting a discriminant analysis, or ANOVA or MANOVA procedure, based on groups obtained from an empirical cluster analysis, is inappropriate, because it will almost always produce significant results (Aldenderfer & Blashfield, 1984; Milligan & Cooper, 1987). Milligan and Cooper (1987) explained that discriminant analysis and MANOVA are biased toward finding significant results because the groups are not defined a priori. Additionally, the statistical tests used to evaluate the significance of the results are biased, because the variables in the model are the same ones used to define the clusters. However, discriminant analysis can be used in job family research as a method for placing new jobs in previously existing groups (Cornelius et al., 1984). # The Relationship of Job Descriptor to Job Family Structure The second group of five studies examined the effect of job analysis information on cluster structure. Cornelius et al. (1979) investigated the effect of three alternative types of job descriptors (tasks, behaviors and job-related abilities), on the number and composition of job families. The purpose of the study was to determine whether a single selection test could be used with seven functionally different foreman jobs in a chemical processing plant. The Ward HCA procedure, combined with discriminant analysis, was used to form groups. Three distinct cluster structures were obtained. The task-oriented items produced the greatest number of clusters, between 3 and 5; the behaviorally-oriented items (from the PAQ) produced 1 global cluster; and the ability items produced 3 clusters. The authors (Cornelius et al., 1979) noted that the task cluster results demonstrated one of the major limitations of HCA. Examination of the plot of within-cluster sum of squares by number of clusters showed that two cluster solutions (3 and 5 groups), were equally homogeneous. Consequently, the choice of a single structure could not be made on the basis of the cluster results alone. The final selection of 5 clusters entailed analysis of the composition of the clusters of each solution, thereby introducing subjective judgement into the clustering procedure. Cornelius et al. (1979) concluded that the job descriptor plays a major role in determining the number and composition of job families, and that the match between the type of data and the personnel procedure must be a major consideration in designing studies. They cited, for example, two types of selection problems that require different descriptors. When selection is for jobs that require previous education and training, and the applicant is expected to perform the activities immediately, task-oriented descriptors would be most appropriate for developing selection instruments and job families. When selection is followed by training in job-related knowledge and skills, as in the Armed Services, then jobs should be grouped by broad cognitive, perceptual and psychomotor abilities (Sackett, 1988). Reynolds, Barnes, Harris and Harris (1992) also investigated clusters formed by tasks, behaviors and abilities, but for a sample of 75 Navy jobs that varied in function and rank. The Ward minimum variance technique was used in combination with the K-means partitional clustering procedure. Iterative or partitional clustering algorithms generate a single partition of the data into K clusters. They were developed to improve upon hierarchical methods that do not permit reassignment. The typical procedure begins with a random partition of objects into clusters. The centroids of the clusters are computed, and the objects are reassigned to the cluster with the nearest centroid. Then the centroids are recalculated and the objects shifted once again. This process continues until no objects change clusters. In the K-means procedure, as in the Ward algorithm, objects are assigned to clusters to minimize the within-cluster sum of squares. Like Cornelius et al. (1979), Reynolds et al. (1992) found different cluster structures by type of descriptor, but the pattern of results was different. Where Cornelius et al. obtained only 1 cluster for behavioral descriptors, Reynolds et al. obtained 9, the largest number in the study. Six clusters were found for both task and ability information, but the composition of the families differed. The task clusters were grouped along functional dimensions: electronics, construction, administrative, weapons, machinery, and communications/ cryptology. The ability-based families were more abstract: perceptual/cognitive, communications/dexterity, cognitive/dexterity, communications, average physical, and physical. In the third study addressing the relationship of descriptors to cluster structure, Cornelius, Hakel and Sackett (1979) used three-mode factor analysis to develop job families to support the design of a performance appraisal system for the Coast Guard. The objective was to identify the number of different appraisal forms needed for all enlisted jobs across functions and levels. Before the study a single form was used for all jobs and levels. The modes of the analysis were: PAQ behaviorally-oriented items, job titles, and level of responsibility (rank) within the organization. The approach was to compute a rotated factor solution for each mode, or job descriptor. A core matrix was then obtained that related the factors of the three modes. The authors (Cornelius et al., 1979) described the analytical model as a three-dimensional cube. The first side consisted of 18 levels for the 18 jobs sampled. The second side had 5 levels that accounted for the 5 ranks included in the study. The third side of the cube had 153 levels representing the 153 PAQ items. Each cell in the cube consisted of a mean relative time spent value that was a unique combination of job, rank and PAQ elements. The three-mode factor analysis produced a 5- by 2- by 7-factor solution. In other words, there were 5 global job families, which were subdivided into two (high and low) ranks, and which differed in their patterns on 7 PAQ-based job analysis factors. Cornelius et al. (1979) considered this approach to be superior to HCA for developing a performance appraisal system for several reasons. First, all three types of data were used to identify and describe the families. Second, the factor loadings were easier to interpret than cluster profiles from HCA. However, interpretation of the factor loading matrix would become difficult if there were a great deal of overlap in the families. Third, the pattern of factor loadings across the modes provided a rich source of data for developing the appraisal instruments. In the final two studies that examined different types of job descriptors, Sackett et al. (1981) and Cornelius et al. (1984) investigated whether holistic ratings of job similarity would produce the same job families as a molecular approach. Both studies found high consistency between global and specific ratings. In the Cornelius et al. study, task- and worker-oriented activities were compared to ability elements and a holistic classification of jobs. More stable results were obtained with the activities-based clusters than with the ability-based job families, which showed substantial overlap. The holistic families were similar to the activity clusters, and the authors concluded that the holistic rating procedure was equivalent to the more resource intensive activity profiles. However, the results for the holistic clusters are questionable, because the ratings were made after completing the full job analysis questionnaire. We would expect that the raters' judgements about the molecular content of the jobs would influence their final global ratings. ### Comparative Analyses of Job Clustering Procedures Another line of research is the comparative analysis of alternative clustering methods. This research has focused mainly on hierarchical and partitional cluster analysis. Two studies were found that compared alternative algorithms, and attempted to make generalizations about the best procedures for different job clustering situations. Monte Carlo procedures based on synthetic data were used to build in experimental controls of the independent and dependent variables, e.g., number of jobs, variables and clusters, types of error and outliers, and the shapes and relative sizes of clusters. Consequently, the results provide only limited guidance for applied research. Garwood, Anderson and Greengart (1991) compared three HCA algorithms (Ward minimum variance, average linkage and single linkage), and two similarity measures (the correlation coefficient and Euclidean distance). The purpose of the study was to evaluate the effects of alternative job family structures on the accuracy of different algorithms in recovering the true structure. Research in numerical taxonomy and cluster analysis has shown that the shapes, relative sizes, and amount of overlap of clusters differentially affects the ability of clustering algorithms to identify the true clusters (Blashfield, 1976; Milligan, 1981a, 1981b; Milligan & Cooper, 1987; Milligan, Soon & Sokol, 1983; Sarle, 1983). Garwood et al. studied this problem specifically as it applies to jobs. The researchers (Garwood et al., 1991) used a Monte Carlo mixture model procedure to generate four different types of cluster structures. In cluster analysis a mixture model refers to the generation of artificial data that can be viewed as samples from a mixture of different multivariate clusters of objects (Milligan & Cooper, 1987). The cluster structures generated by Garwood et al. (1991) varied in the relative sizes of the groups, the shapes of the distributions, and the levels of mean differences in profile scores. Four types of job family structure were simulated: 1) increasing responsibility, as in career
families, 2) specialists among generalists, as in a research group that includes computer programmers, 3) different functional areas, and 4) hierarchical functions with overlapping responsibilities across levels, e.g., nurses. The results showed that average linkage was slightly better than the Ward algorithm for all types of cluster structures; while single linkage was a distant third. Further, average linkage performed well when the data contained outliers. The correlation coefficient produced the best recovery when clusters differed by shape, and when the data contained outliers. Distance was superior when clusters differed by level of job analysis profile. (Two job families would differ by level, for example, if the jobs in one family were more difficult than in the other.) The efficiency of both the Ward and average linkage procedures was reduced by differences in cluster size. The findings have important implications for matching the clustering procedure and similarity measure with the personnel procedure for which the job families are created. For example, a study to design a career development program would probably sample jobs with increasing responsibility within one functional area. In this case the average linkage procedure, with a distance measure, would be expected to provide the best recovery. If job families were being constructed to support the design of performance appraisal instruments, the sample might include jobs from all functional areas at the same level in an organization. The correlation coefficient would be the appropriate proximity measure in this situation. Zimmerman et al. (1982) compared the Ward HCA algorithm to a combination of Ward plus the K-means iterative procedure, and a density search technique. Density search algorithms are designed to identify natural clusters of any shape by analyzing areas of greater and lesser density. Theoretically, they should be superior to Ward and K-means clustering when the relative sizes of groups differ. Using a mixture model of multivariate normally distributed clusters, the authors examined the recovery of alternative procedures when the number of jobs, clusters and job descriptors, and the relative sizes of the clusters, were varied. Contrary to expectations, the Ward and Ward/K-means procedures were generally about equal in recovering the true cluster structures, while the density search technique was significantly worse. The Ward/K-means procedure was expected to be superior to the Ward procedure alone, especially with a large number of jobs, because of the reassignment feature. Increasing the number of job descriptors and the number of clusters improved the first two procedures, but not the latter. Increasing the number of jobs had a positive effect on only the K-means approach. The authors also examined the effect of overlapping clusters on the three methods. Only the Ward procedure was reduced in accuracy with overlapping clusters. The Garwood et al. (1991) and Zimmerman et al. (1982) studies fit within a larger body of cluster analysis research that spans many fields in the social and physical sciences. Their results are partially supported by comparative analyses outside of personnel psychology. However, the larger body of cluster analysis research contains a great many inconsistencies and is difficult to summarize. This is partially due to the lack of consistency in methods, designs and variables under investigation. A small indication of the conflicting results that characterize the cluster analysis literature can be seen by comparing the above mentioned studies to a comparative analysis by Scheibler and Schneider (1985). They investigated nine hierarchical and four nonhierarchical clustering procedures using synthetic data. Like Garwood et al. (1991), they found that the correlation coefficient was generally more effective than a distance measure in recovering cluster structure. They speculated that this could be because a correlation, which is insensitive to mean differences in the variables, may be more robust in the presence of outliers. In contrast to Garwood et al. (1991) and Zimmerman et al. (1982), Scheibler and Schneider (1985) found that the Ward algorithm, used with a distance measure, outperformed both a combined Ward/K-means approach and average linkage. A second conflict was that the recovery of average linkage was poor with a distance measure. Finally, Scheibler and Schneider also compared the Ward and average linkage procedures when clusters overlapped. Unlike Zimmerman et al, they found that the Ward algorithm was more accurate than average linkage. ### Conclusion The issue that received the most attention in recent job family research was the effect of the job descriptor on cluster structure. Several conclusions were drawn from the studies that provide guidance for future research. First, Sackett (1988) stated that the level of specificity of the job descriptors should match the level of specificity of the personnel procedure for which jobs are clustered. For example, global ratings of the similarity among jobs would not be appropriate for grouping jobs into families for training. Second, broad and specific descriptors have both strengths and weaknesses, and should be considered complementary, not competitive. More technically and behaviorally abstract descriptors (e.g., the PAQ, abilities), produce more global and overlapping job families (Harvey, 1986, 1991). Specific descriptors (e.g., tasks), tend to produce a larger number of more narrowly defined clusters, but this depends on the construction of the items. Third, using a large number of job analysis dimensions appears to improve the quality of the cluster solution (Zimmerman et al., 1982). Despite recognition of the importance of the choice of job descriptor for cluster structure, more research is needed to determine specifically which descriptors are appropriate for different personnel processes. Beyond the general guidelines mentioned above, the choice at present depends almost entirely on the judgement and experience of the researcher. A large number of clustering methods have been found useful for forming job families, but studies based on actual jobs and descriptors have tended to investigate only one clustering procedure for a specific purpose. Comparative analyses of clustering procedures in applied settings are needed. Garwood et al. (1991) and Zimmerman et al. (1982) addressed this issue in ¹See Harvey (1986) and Schoenfeldt (1985) for more extensive descriptions of clustering procedures than were included here. well-controlled Monte Carlo studies. However, the generalizability of their results to applied data is unknown. Finally, most of the applied job family studies attempted to validate cluster structures against an external criterion. A small number of studies evaluated the stability of clusters. However, no systematic method for evaluating the quality of cluster structures was found. This was true in both the applied and Monte Carlo research domains. An applied cluster evaluation method, described below in Chapter Two, was developed in this study to address the gap in the literature. The proposed method was used to conduct a comparative analysis of hierarchical and partitional clustering procedures. The job family structures of four Army data bases containing actual jobs and alternative job descriptors were investigated. The method was assessed for its utility in constructing reliable, valid cluster structures in applied research settings. ### Army Job Families ### Army Career Management Fields According to Army Regulation (AR) 611-201, Enlisted Career Management Fields and Military Occupational Specialties, the Commanding General, U.S. Total Army Personnel Command (CG, PERSCOM) develops and maintains the career management fields (CMF) and military occupational specialties (MOS) for five major purposes: recruitment, training, assignment, distribution, and professional development. The CG, PERSCOM is responsible for establishing "a methodology for review, analysis, and implementation of classification structure changes" and for maintaining "military career progression patterns" (p. 17, Headquarters, Department of the Army, 1992). PERSCOM operates under the guidance of the Deputy Chief of Staff for Personnel (DCSPER), who establishes occupational classification structure policy (Headquarters, Department of the Army, 1992). The objectives of the CMF structure are to: provide logical patterns for progression to higher level jobs, provide standard grade-skill level relationships, consolidate MOS at higher grade levels, and provide for self-sustainment through entry-level recruiting or lateral entry from other CMF where appropriate. Currently, there are 35 CMF as shown in Table 1. The CMF and MOS are part of the Army's Enlisted Personnel Management System (EPMS). Rosse, Borman, Campbell and Osborn (1983) described the CMF from an historical perspective. They stated that the CMF system was developed as part of the branch system, which contained 14 groupings, or branches, of soldiers that represented a specific service of the Army, e.g., Infantry or Finance. The CMF are designed to contain homogeneous sets of MOS which share common career paths, but practical considerations also determine their composition. The MOS within a particular CMF are related to ensure that soldiers have the knowledge and abilities for training and assignment to other specialties within the CMF. Rosse et al. (1983) noted three practical considerations, in addition to similarity of ability patterns, that help to determine the composition of the CMF. First, the CMF support the "feeder-capper" system. This system is designed to provide a career path for all MOS from E-1 to E-9. MOS lacking Table 1. Enlisted Career Management Fields - Administration - Recruiting and Reenlistment - Public Affairs • - Bands - Aircraft Maintenance - Aviation Operations - Civil Affairs - Electronic
Maintenance and Calibration - General Engineering - Chemical - Topographic Engineering - Medical - Mechanical Maintenance - Electronic Warfare/Intercept Systems Techno logy - Military Intelligence - Signals Intelligence/Electronic Warfare Operations - Military Police - Infantry • - Armor Air Defense System Maintenance - Land Combat and Air Defense System Direct and General Support Maintenance - Psychological Operations Combat Engineering Field Artillery Air Defense Artillery Special Forces - Visual Information - Signal Maintenance - Signal Operations - Record Information Operations - Ammunition - Supply and Services - Petroleum and Water - Food Services - Transportation Source: Headquarters, Department of the Army, 1992. positions for higher grades are feeders and are assigned a capper MOS (with somewhat similar job content), which does have higher grades. The feeders and cappers are placed in the same CMF so that soldiers in the feeder MOS can advance to E-9 while remaining in the same CMF. Second, MOS that entail working with the same types of equipment are often placed in the same CMF. Third, some CMF are designed to represent a mission identity, e.g., Special Forces, that includes a heterogeneous group of MOS. In summary, the Army's CMF system is a personnel management tool used for developing, counseling, and managing enlisted personnel. Although homogeneity of job content is a primary concern in configuring CMF, practical considerations tend to increase their heterogeneity. #### Army Aptitude Areas The Army Aptitude Area (AA) system was developed in 1949 when the Army Classification Battery (ACB) formed the basis of selection and classification testing (Johnson, Zeidner & Leaman, 1992). At that time there were 10 AA, or job families. In 1956 the number of AA was reduced to 7. In 1972 Maier and Fuchs increased the number of AA to 9 as part of a selection and classification efficiency study to revise the ACB (see Table 2 below). The revision of the AA system was based on a partly empirical and partly rational procedure. Both subject matter expert (SME) judgements of the similarities in performance requirements, and the similarity of patterns of weights on cognitive and interest measures, were utilized in forming the families. In addition, practical considerations, e.g., adhering to the official Army organizational structure, were included wherever possible. Although the ASVAB has replaced the ACB as the Army's selection and classification battery, the AA established in 1972 are still in use (Maier & Grafton, 1981). Each AA is associated with a unique composite of 3 or 4 unitweighted ASVAB subtests. The cutoff scores on the composites determine a Table 2. Army Aptitude Areas | Combat | Infantry, Armor, Combat Engineer | |---------------------------------|--| | Field Artillery | Field Cannon and Rocket Artillery | | Electronics Repair | Missiles Repair, Air Defense Repair, Tactical
Electronic Repair, Fixed Plant Communications Repair | | Operators and Food | Missiles Crewman, Air Defense Crewman, Driver, Food
Services | | Surveillance and Communications | Target Acquisition and Combat Surveillance, Communication Operations | | Mechanical Maintenance | Mechanical and Air Maintenance, Rails | | General Maintenance | Construction and Utilities, Chemical, Marine, Petroleum | | • Clerical | Administrative, Finance, Supply | | Skilled Technical | Medical, Military Policeman, Intelligence, Data
Processing, Air Control, Topography and Printing,
Information and Audio Visual | Source: Maier & Fuchs, 1982. recruit's eligibility for entry into specific MOS. Johnson et al. (1992) recently evaluated the effectiveness of the AA composites and job families for classification. They found that increasing the number of groups from 6 to 9, 12, 16 and 23, and altering their composition to increase the homogeneity of the jobs in terms of ability profiles, produced statistically and practically significant increments in classification efficiency. In addition, Johnson et al. compared the AA to the more numerous CMF in terms of classification efficiency, and also found a large increase in classification efficiency when the CMF were used for job assignment. The Johnson et al. (1992) study has been criticized because the purely empirical configuration of their classification-efficient job families combines jobs with highly divergent content into a single cluster (Laurence & Hoffman, nd). Consequently, recruiting and classification with the Johnson et al. job clusters would be difficult from a marketing perspective. For example, one family included M48-M60 Armor Crewmember, Food Service Specialist and Military Police. Recruiters would have a tough time persuading applicants to enter some of these analytically-determined families. In general, as more families were included in the Johnson et al. (1992) configurations, they became more functionally similar and operationally meaningful. The major benefit of the recent classification work is that it indicates that the efficiency of the Army classification system could be improved by increasing the number of job families, and modifying their composition to maximize classification efficiency. But practical concerns, e.g., marketability to recruits, must also be considered in the development process. ### Enlisted DoD Occupational Codes The Department of Defense (DoD) has constructed a classification of military occupations that reflects the job family structures of the four Services (Office of the Assistant Secretary of Defense [Force Management and Personnel], 1987). This classification is a hierarchical arrangement consisting of three levels. At the most global level there are 10 occupational groups with corresponding one-digit codes as shown below in Table 3. Table 3. Enlisted DoD Occupational Codes - Infantry, Gun Crews, & Seamanship Specialists - Electronic Equipment Repairers - Communications & Intelligence Specialists - Health Care Specialists - Other Technical & Allied Specialists - Functional Support & Administration - Electrical/Mechanical Equipment Repairers - Craftsmen - Service & Supply Handlers - Non-Occupational Source: Office of the Assistant Secretary of Defense, [Force Management and Personnel], 1987). The 10 global clusters are further subdivided into 68 more narrowly-defined clusters with two-digit codes. The most specific level of the taxonomy includes 160 subgroups with three-digit codes. Allocation to occupational codes is based on "careful analysis of the duties of each specialty" across the Services (Office of the Assistant Secretary of Defense [Force Management and Personnel], 1987). The DoD occupational groups are useful for identifying jobs across Services that fall into the same job families. They also have been used in selection and classification research to reduce the complexity of the analysis (Harris, McCloy, Dempsey, Roth, Sackett, & Hedges, 1991). ### Job Families in Research A number of different job family structures have been constructed as part of selection and classification research projects. Selection of the sample of 21 MOS for the Army's comprehensive Selection and Classification Project (Project A), was based on a combination of empirical cluster analysis and practical criteria (Hoffman, 1987; Rosse, Borman, Campbell & Osborn, 1983). The multi-step process combined the efforts of project scientists, Army officers and expert review panels. Campbell (1990) stated that the criteria for determining which MOS became part of Project A were: 1) oversampling of high density MOS with large numbers of women and minorities, 2) oversampling from the population of the most critical MOS, and 3) inclusion of jobs that represented major job families clustered by judged similarity of task content. The job clustering component of the sample selection process was conducted in two phases (Hoffman, 1987; Rosse et al., 1983). In Phase One, a sample of 111 MOS was selected from the larger population of jobs, because pilot testing indicated that rating the total population of more than 200 entry-level MOS would be an unmanageable task for SMEs (Rosse, 1983). Based on the research of Cornelius et al. (1984), Rosse et al. (1983) used a global rating task instead of conducting a more time-consuming and expensive task analysis. Military and civilian SME sorted MOS into groups based on job titles and the similarity of performance requirements taken from AR 611-201. The interrater reliability was .94. The SME sorting task was used to form a similarity matrix in a two-stage process. The first matrix contained elements that were the proportion of raters who grouped a pair of jobs into the same family. The vectors of this matrix for all pairs of jobs were correlated to form the final similarity matrix. Job families were formed by evaluating orthogonal and oblique principal factor solutions of the correlation matrix. A 23-cluster solution was derived from analyzing patterns of factor loadings of MOS across 15 factors. This solution was compared to the CMF using Cohen's (1960) kappa statistic. Kappa provides a measure of agreement between two matrices, with a correction for chance matches. The kappa value of .55 indicated moderate agreement between the two job family structures. The 23-cluster solution provided input into the selection of 19 MOS for the Project A concurrent validity study. The authors observed that a potential weakness in the clustering methodology was that the raters might rely more on the MOS titles to form clusters than on the job descriptions. The Phase Two cluster analysis was designed to select two more MOS for subsequent Project A research (Hoffman, 1987). This time raters were asked to sort all 268 entry-level MOS, using the original 23 clusters to start. A latent partition analysis, like the one conducted in Phase
One, was performed along with the average linkage HCA procedure. The second study also produced 23 clusters. Peterson, Owens-Kurtz and Rosse (1991) later clustered the 21 Project A jobs as part of the Army synthetic validity project. The MOS were clustered on the basis of a 96-item task questionnaire for which ratings of importance for core-technical proficiency (CTI) and the overall job (OJI) were obtained. The Ward minimum variance procedure was used, with the correlations of task profiles forming the similarity matrix. Two different cluster solutions of 4 and 3 groups, respectively, were obtained. The CTI clusters were labeled: electronics, administration/support, combat and mechanical/construction. The OJI clusters were: electronics/repair, administration/support and combat. #### Research Questions The objective of this study was to develop and test a method for evaluating the quality of job family structures, and for comparing alternative clusters of jobs developed for different purposes (e.g., personnel classification or career development), and based on different types of descriptors (e.g., tasks or aptitudes). Sokal (1988) identified validation and comparison of cluster structures as among the unsolved problems in numerical taxonomy. Relatively little work has been done on developing cluster evaluation methods, because most of the research has focused on the development of new clustering algorithms (Jain & Dubes, 1988). One exception is the work of Milligan and his colleagues (Milligan, 1979, 1980, 1981a, 1981b, 1985; Milligan & Cooper, 1985, 1987; Milligan & Isaac, 1980; Milligan & Schilling, 1985; Milligan & Sokal, 1980; Milligan, Soon & Sokol, 1983). These researchers conducted a series of Monte Carlo studies using synthetic data, where the true cluster structure is known, to investigate alternative indexes for evaluating the internal and external validity of cluster structures. Our approach was taken largely from Milligan's work. The major difference is that the evaluation method developed in this study was designed to assess the quality of cluster structures based on actual data where the true cluster structure cannot be known. Not only will an applied cluster evaluation method make an important contribution to job family and cluster analysis research, it will be of immediate practical application to the Army, which uses job families as personnel management tools to make operational decisions. The core research question underlying the method was how to reconcile the differences in the number and composition of job families found in the literature and within the Army. As discussed above, the Army has two formal job family structures (CMF and AA), designed to group jobs according to similarity in performance requirements for two different purposes: career progression and personnel classification. Several studies have constructed alternative configurations of jobs, e.g., Rosse et al. (1983), Hoffman (1987), Peterson et al. (1990), Johnson et al. (1992), and Statman (1993). At present there is no cluster evaluation method that can provide quantitative information about the differences in these job family structures. A second stimulus for investigating methods of assessing the composition of Army job families comes from the changes in the Army's mission, structure, and the design of jobs, due to the end of the cold war and the alteration of the U.S. role in world politics. Zimmerman et al. (1982) observed that any method for assessing the quality of a job family structure must include measurement of stability or consistency, and of the accuracy of the solution in uncovering the true structure of the jobs. The proposed evaluation method consists of a set of tools (analytic procedures and indexes), that can be used in both basic research and applied studies, and includes the following components: - · internal validation, - consistency analysis, - external comparisons, and - validation against an external criterion. Internal validation of the cluster structure of a set of objects, in our case jobs, involves identifying the number and composition of clusters that provides the best recovery of the underlying relationships among the objects in the distance matrix (Jain & Dubes, 1988; Milligan, 1981a). This must be the first step in evaluating the quality of a cluster solution obtained by empirical or rational means. The consistency of a cluster structure is its stability across alternative clustering methods or samples. Consistency analysis is a replication method of evaluating whether the observed cluster structure is the true cluster structure. The limitation of replication studies in applied data sets is that a negative finding provides little or no information about the sources of inconsistency (Milligan & Cooper, 1987). For example, if little overlap in cluster structure is found across clustering methods, the discrepancies may be due to the algorithms, or the characteristics of the data, or both. Consistency analysis provides no internal mechanism for determining the contribution of either source of error. External comparisons in Monte Carlo studies involve validation of the empirical clustering procedures against the true structure of the data created by the researcher (Milligan & Cooper, 1987). An external validation can be conducted in an applied setting if an external standard can be designated as the true cluster structure. However, the objective of applied job family research is to group jobs into families when the true structure is unknown. Consequently, external comparisons in job family research are limited to evaluating the overlap of new clusters with existing operational job families (e.g., the AA or CMF), or with other cluster structures based on different job descriptors. Although these analyses are not validations, they provide diagnostic information about the extent of change that could be expected by substituting the new clusters for preexisting ones, or about the similarities and differences in the definitions of job families based on different dimensions of work, e.g., tasks, behaviors and aptitudes. The first three components of the proposed cluster evaluation method were tested using available job analysis data on Army MOS. The method's usefulness as an analytical tool was assessed in terms of the quality of the data it produced, and the relevance of the procedures for answering important applied research questions. The last step in the method, validation of clusters against an external criterion, was beyond the scope of this study. However, it is necessary in applied research when the clusters will be used in decision-making, because the true structure of the data is unknown. The external criterion must be the effectiveness of the cluster structures for accomplishing some operational purpose, e.g., assigning applicants to jobs in a personnel classification system, helping soldiers chart their career paths, or providing a framework for personnel training and development programs. ### CHAPTER II #### **METHOD** #### Data The study was designed to use existing job analysis data from three previous studies rather than to collect new data. The first data base was compiled in the Joint Service Job Performance Measurement Project (Harris, McCloy, Dempsey, Roth, Sackett, & Hedges, 1991), which included entry-level military jobs across all four Services. Harris, McCloy, Dempsey, DiFazio and Hogan (1993) used the Army jobs in a subsequent study of alternative selection and classification models. Only the Army jobs were examined in the present study. Job descriptors were obtained for 263 Army MOS using job analysis information from the Dictionary of Occupational Titles (DOT) (Harris et al., 1991). The DOT data base of occupational codes and job analysis ratings on 44 items was obtained for civilian jobs from the National Technical Information Service (U.S. Department of Labor, 1977). These jobs were matched to all entry-level Army jobs in existence in the mid-1980's using a military-civilian crosscode data base (Lancaster, 1984; Wright, 1984). Only about 20 MOS were excluded from the analysis because they could not be matched to civilian jobs. However, several groups of MOS, e.g., many electronics jobs, received identical descriptors because the civilian job structure was not as differentiated as the Army MOS. The 44 DOT items cover worker functions (the DOT data, people, things scales), training time, cognitive aptitudes, temperaments, interests, physical demands and working conditions. Harris et al. (1993) reduced the items to four Army-specific orthogonal principal components, rotated to varimax simple structure. The principal components accounted for about 50 percent of the variance in the job descriptors and were labeled: 1) working with things, 2) complexity, 3) unpleasant working conditions, and 4) stressful working conditions. This DOT data base was considered to be the population of Army jobs at data collection in the late 1980's. The second data base was the subject matter expert (SME) sorting data from the Project A cluster analysis studies (Hoffman, 1987; Rosse et al., 1983) described above. It contained 268 entry-level MOS, and also represented the Army's job population at the time of data collection. The proportion of SMEs who assigned pairs of jobs to the same cluster, based on a global description of performance requirements, formed a similarity matrix that was the basis for clustering. The DOT and Project A data bases had 227 overlapping jobs. The differences reflected changes in the Army's job structure across the two data collections. The third data base was the sample of 21 Army MOS studied in the Army synthetic validity project (Wise, Peterson, Hoffman, Campbell, & Arabian, 1991). This sample was partially based on the cluster analysis results obtained by Rosse et al. (1983) and Hoffman (1987). The 21 jobs span 16 of the 23 clusters they found, and was selected to meet
a number of scientific and practical criteria (Campbell, 1990). The job descriptors were 96 task statements rated in importance for either core technical proficiency (CTI) or for the overall job (OJI). The development and analysis of the task questionnaire is described in Hoffman, Fotouhi, Campshure, & Chia (1991). ### Cluster Analysis Procedures Three clustering algorithms were compared: Ward's minimum variance hierarchical cluster analysis (HCA), average linkage HCA, and a modified K-means algorithm contained in the SAS computer program (SAS Institute Inc., 1990). The only difference between SAS's K-means procedure and MacQueen's (1967) original algorithm is that initial cluster centroids are determined in a manner that minimizes the number of iterations needed to obtain a final solution. The K-means procedure was used with a set of random seeds, or initial cluster centroids. Three clustering algorithms were chosen for investigation because previous comparative studies, based on Monte Carlo analyses, have found that each one provides accurate cluster recovery under different conditions (see, for example, Zimmerman et al., 1982, and Garwood et al., 1991). In all but the Project A analyses, squared Euclidean distance, d^2 , was the proximity measure. Squared Euclidean distance measures the differences in the level and shape of job descriptor profiles, but level is more important in determining cluster structure. The correlation coefficient is another common measure of proximity in cluster analysis. It measures only similarity in profile shape. A correlation coefficient may have been more appropriate with the data in the present study, because all jobs are at entry-level, and probably differ more in profile shape than in level. However, d^2 was the single proximity measure that would allow us to use the SAS cubic clustering criterion (CCC) for the internal validation. Initial analyses were conducted with both measures. Comparison of the cluster solutions showed that the clusters were different, but that neither measure was consistently superior. The similarity measure for the Project A data was the proportion of raters who placed pairs of jobs in the same cluster. This measure was subtracted from one to produce a dissimilarity measure, as required by the SAS algorithms. ## Number of Clusters and Internal Validity ### Indexes Two indexes, CCC and Hubert's (Hubert & Arabie, 1988) Gamma, were used to identify the best cluster solution from among a large number of alternative classifications. CCC is a measure of the proportion of variance accounted for by the observed cluster solution, compared to the proportion of variance accounted for by clustering a uniform distribution based on a hyperbox (Milligan & Cooper, 1985; Sarle, 1983). Positive values of CCC greater than 2.0 "mean that the obtained R² is greater than would be expected if sampling from a uniform distribution, and therefore, indicate the possible presence of clusters" (p.4, Sarle, 1983). The CCC statistic tests the alternative hypothesis that: "the data have been sampled from a mixture of spherical multivariate normal distributions with equal variances and equal sampling $^{^2}$ The k-means clustering procedure can not be used with a distance matrix, so we did not perform this analysis for Project A. probabilities" (p.4, Sarle, 1983). Milligan and Cooper (1985) compared CCC to 29 other stopping rules and found that it was quite successful in recovering the proper number of clusters from synthetic data sets, where the true number of clusters was known--performing sixth best. A second index, the standardized version of Hubert's (Hubert & Arabie, 1985) Gamma, was also used to determine the number of clusters. In standardized form Gamma is the sample correlation between the entries of two matrices, in this case a cluster solution and a distance matrix (Jain & Dubes, 1988). The numerator is the difference between consistent cluster memberships and inconsistent memberships for all pairs of objects. A consistent pair of objects occurs when objects that are assigned to the same cluster have smaller distances than objects assigned to different clusters. Inconsistency occurs when objects in the same cluster have larger distances than objects in different clusters. The denominator is the total number of object pairs, or n(n-1/2), where n is the number of objects. Gamma ranges in value from -1 to +1, and is corrected for chance matches in the two matrices. Gamma is 1.0 when a cluster solution is perfectly consistent with the underlying data matrix, and 0.0 when pairs match by chance. We also examined the usefulness of the point-biserial correlation for choosing cluster solutions, because it is a familiar measure to industrial psychologists. The point-biserial correlation is a raw measure of agreement between a dichotomous and continuous variable (Jain & Dupes, 1988; Lord & Novick, 1968). The range of the coefficient varies with the ratio of 1's to 0's on the dichotomous variable (i.e., the cluster solution matrix). Milligan and Cooper (1985) found it to be only slightly poorer than CCC in selecting the number of clusters. However, we decided that it was not suitable for comparing values across different numbers of clusters, because the ratio of 1's to 0's would probably vary quite a bit. We tested this and found it to be true. #### Procedure The procedure for clustering the data was to examine a large number of solutions for each clustering algorithm. The cluster structures differed in the number and composition of the clusters. The objective of the internal validation was to select the solution with the fewest clusters that provided an adequate fit with the underlying distance matrix. Cluster solutions containing between 2 and 50 clusters were examined for the DOT and Project A jobs. Solutions with 2 to 20 clusters were obtained for the 21 synthetic validity jobs, using both the CTI and OJI task ratings. SAS provides CCC values when the number of clusters is 20 percent or less of the number of jobs. Therefore, CCC values were computed for solutions with 2, 3 and 4 clusters in the synthetic validity data, and for up to 50 clusters in the other two data bases. Gamma was computed for 2 to 50 clusters for the two large data sets and 2 to 20 clusters for the synthetic validity data. The CCC and Gamma values were then plotted against the number of clusters for each of the three algorithms: Ward, average linkage, and K-means. The CCC plots were evaluated by looking for large jumps in values, or for peaks in the distribution, as the number of clusters increased (Sarle, 1983). Gamma was assessed by looking for peaks. When the indexes selected different cluster solutions, CCC was used to weed out potentially random solutions. The final decision was made by selecting the single best solution within the nonrandom set using the Gamma plot. If several solutions had about the same Gamma value, then the solution with the smallest number of clusters was selected. We used CCC in combination with Gamma in our study because CCC provided a means for evaluating statistical significance, while no test was available for Gamma, the better measure in Monte Carlo studies. Previous studies based on the four data sets enabled us to make predictions about the expected number of clusters. Harris et al. (1991) obtained 13 job families, when they clustered all military jobs using the DOT data. We expected about the same number, or slightly fewer, since our study examined only Army jobs. Both Rosse et al. (1983) and Hoffman (1987) obtained 23 clusters in the Project A data. The synthetic validity data base of 21 jobs represents 16 of the 23 Project A clusters (Hoffman, 187). As mentioned above, Peterson et al. (1991) used the Ward HCA procedure, with correlations as proximity measures, to cluster the OJI and CTI data. They obtained 4 clusters for CTI and 3 clusters for OJI. No hypotheses were proposed for differences in the clustering algorithms, except that we expected the Ward and K-means solutions to be fairly similar because they both minimize withincluster variance. # Cluster Structure Consistency³ Two types of consistency analyses were conducted: 1) comparisons of the results of alternative clustering procedures, and 2) cross-validation. The objective was to assess whether the composition of the groups would be stable across algorithms and cross-validation samples. If we found consistency, despite not being able to conduct statistical tests, then we would have some confidence that the cluster structure was robust. We used the simple matching coefficient attributed to Rand (1971) to compare pairs of cluster structures in both sets of consistency analyses. The Rand is the sum of consistent comparisons across two cluster structures, represented as binary variables for the same set of objects. The value is 0.00 when two jobs are in the same cluster and 1.00 when they are in different clusters. Consistent matches between two cluster solutions are found when: 1) two jobs are in the same clusters in the two solutions, or 2) the jobs are in different clusters in the two solutions. The numerator of the Rand is the sum of the two types of consistent comparisons and the denominator is the total number of pairs of jobs. The range of the Rand is 0.0 to 1.0. Hubert and Arabie (1985) demonstrated that the Rand statistic is a special case of Gamma. Previous research indicated that the raw Rand produced inflated values with little variance (Jain & Dubes, 1988; Milligan & Schilling, 1985). For example, Fraboni and Cooper (1989) used the raw Rand statistic to compare six hierarchical clustering algorithms for grouping the subtests of the Wechsler Adult Intelligence Scale-Revised. They obtained only three values for 15 comparisons: .49, .67 and 1.00. Hubert and Arabie (1985) developed a formula for correcting the raw Rand for chance matches, which should result in more realistic estimates and increased
variance. An earlier correction formula by Milligan and Schilling (1985) was found to be incorrect. We calculated both the corrected (Rand_c) and raw Rand. $^{^3}$ The synthetic validity data bases were dropped from these and the remaining analyses because of the small sample size. ### Comparison of Clustering Procedures The first set of consistency analyses involved comparing clustering algorithms. The Rand_c index was computed for comparisons between the Ward and average linkage, Ward and K-means, and average linkage and K-means, procedures. ### Cross-validation A double cross-validation analysis was conducted with the DOT jobs. We modified a procedure proposed by McIntyre and Blashfield (1980). Their approach was to randomly divide a data set in half and to cluster Sample One. Then they used the cluster centroids from Sample One to form clusters in Sample Two. Sample Two was then clustered directly, and the two clusterings of Sample Two were compared using a measure of agreement. We followed this procedure for both samples, and then took the average Rand as our estimate of stability, thus performing a double cross-validation analysis. We hypothesized that the two sets of stability analyses would show consistent cluster structure across clustering algorithms and cross-validation samples. ### External Comparisons We conducted two types of external comparisons. Although we could not compare our empirical solutions to the true cluster structures of the data bases, we did compare them to the Army Aptitude Areas (AA). As discussed in Chapter One, the AA were formed by grouping jobs with similar patterns of validity coefficients on the ACB, and through SME evaluations of the similarity of performance requirements. Our research question in the first set of external analyses was whether any of the job family structures, based on different types of job descriptors and three different empirical clustering algorithms, would be similar to the operational AA job families, derived by a different process. We anticipated that the AA would show little overlap with the cluster solutions obtained in this study. The final step in the evaluation method was to compare the cluster structures obtained in the DOT and Project A data sets for the 227 overlapping jobs. We asked the same general question: Are the cluster solutions obtained from different types of job analysis data for the same set of jobs consistent? We expected little overlap in the job families. $^{^4}$ The cross-validation required average scores on the descriptors for each job, and consequently, could not be conducted for the Project A data base, which consisted of only a distance matrix. ### CHAPTER III #### RESULTS Appendix A contains the MOS in the four data bases we studied, and the Aptitude Areas (AA) and Career Management Fields (CMF) to which they belong. Appendices B through L present the results of the cluster analyses for the three clustering procedures in the four data bases. ### Internal Validity The objective of the internal validity analysis was to select the single best solution from among a large number of solutions produced by each clustering algorithm. Appendices B through D present the results of the Ward, average linkage and K-means cluster analyses of the DOT jobs, respectively. Figures 1 and 2 in each appendix contain plots of the CCC and Gamma values by number of clusters. Table 1 in the appendices contains the assignments of jobs to clusters, the job title and the distance of each job from the cluster centroid. The average within-cluster distances and mean cluster factor scores are also presented. The results of the Ward and average linkage clusterings of the Project A jobs are presented in Appendices E and F. Figure 1 contains the plot of Gamma by number of clusters. CCC could not be obtained for the Project A data base, which consisted of a distance matrix, because this index is calculated from mean scores on a set of variables for each job. Although the form of the Project A data limited our analyses, we decided to retain it in the study, because it contained a large number of MOS, many of which overlapped with the DOT jobs. This would allow us to make comparisons between the two data bases, which contain different types of job descriptors. Table 1 in Appendices E and F presents the cluster assignments. Appendices G through I contain the three cluster solutions for the synthetic validity OJI data, and Appendices J through L present the results for the CTI data. Table 4 below shows the number of clusters that were selected by examining the CCC and Gamma plots for each clustering method and data base. The number of clusters varied across clustering algorithms and data bases. In general, the largest number of clusters was obtained with the average linkage algorithm, and in the Project A data base. However, the average linkage procedure produced fewer clusters than the Ward and K-means procedures in the synthetic validity CTI sample. The differences in the number of clusters found for the DOT and Project A data bases were in line with expectations. We anticipated a relatively small number of clusters in the DOT data, given the global nature of the factor scores, and the Harris et al. (1991) finding of 13 clusters for 900 military jobs. We found about twice as many clusters in the Project A data base, and close to the 23 clusters obtained by Rosse et al. (1983) and Hoffman (1987). Note that distance and mean factor scores could not be computed for the Project A jobs because we did not have job descriptor scores on individual observations. Table 4. Number of Clusters Selected by Three Cluster Analysis Methods for DOT, Project A and Synthetic Validity Data Bases | | Cluster Analysis Method | | | | | |------------------------|-------------------------|-----------------|---------|--|--| | Data Base | Ward | Average Linkage | K-Heans | | | | DOT | 7 | 13 | 6 | | | | Project A | 17 | 21 | - | | | | Synthetic Validity-OJI | 8 | 10 | 10 | | | | Synthetic Validity-CTI | 13 | 9 | 17 | | | The cluster analyses of the synthetic validity data produced different numbers of clusters for OJI and CTI ratings. Examination of the Gamma plots identified peaks for structures with between 8 and 10 clusters for OJI ratings, and 9 to 17 for CTI. These results are quite different from the cluster solutions obtained in earlier studies. Recall that the synthetic validity jobs are a sample from the Project A data base. The 21 MOS represent 16 of the 23 Hoffman (1987) clusters. Recall also that Peterson et al. (1991) found 3 clusters for OJI and 4 clusters for CTI. The remaining analyses explore the similarities and differences in the cluster structures of the DOT and Project A data bases. The synthetic validity data were dropped from further analysis because of the small sample size, which probably contributed to the inconsistencies in findings across studies. ### Consistency Analyses ### Comparison of Clustering Procedures Tables 5 and 6 below present the corrected and raw Rand values comparing pairs of algorithms used to cluster the DOT and Project A data bases, respectively. Examination of the corrected Rand values (Rand $_{\rm c}$) shows that the cluster structures produced by the three procedures are moderately consistent for both the DOT and Project A data, despite the variation in the number of clusters. For the DOT data, the greatest consistency was found between the Ward and K-means clusters (Rand $_{\rm c}$ = .6860), and the least consistency was found between the average linkage and K-means structures (Rand $_{\rm c}$ = .5207). As mentioned above, the Ward and K-means procedures are similar in that they both use the same optimizing criterion--minimum within-cluster variance. They differ in that the Ward procedure produces a hierarchical nesting of job clusters, while the K-means algorithm does not. Further, the K-means ⁶The CCC plots contained in Appendices G through L show that solutions with 2 to 4 clusters were not significantly different from chance in our analyses. Unfortunately, CCC values are not computed by the SAS cluster analysis program, when the number of clusters is greater than 20 percent of the objects. Therefore, we could not evaluate other solutions using this index. Table 5. Rand Values Comparing DOT Cluster Structures Across Cluster Analysis Methods^a | Cluster Analysis Method and Number of | Ward | Average Link | K-Means | | |---------------------------------------|------|--------------|------------------|--| | Clusters | (7) | (13) | (6) | | | Ward | 1.00 | .6200 | .6860 | | | (7) | | (.9011) | (.9137) | | | Average Link
(13) | | 1.00 | .5207
(.8620) | | | K-Means
(6) | | | 1.00 | | First value is Rand, value in parentheses is raw Rand. Table 6. Rand Values Comparing Project A Cluster Structures Across Cluster Analysis Methods^a | Cluster Analysis Method and | Ward | |-----------------------------|---------| | Number of Clusters | (17) | | Average Link | .7087 | | (21) | (.9681) | First value is Rand, value in parentheses is raw Rand. procedure was designed to improve upon the Ward method by reassigning jobs after initial clustering to improve homogeneity. The results show that reassignment did not make much difference in the cluster structure. Table 7 presents a more detailed picture of the similarities and differences between the cluster structures produced by the Ward and K-means algorithms, and is the contingency table that forms the basis for computing the Rand_c index. The columns contain the number of jobs in the K-means solution. The rows contain the number of jobs in the Ward clusters. The elements are the number of jobs in a particular cluster of each solution that overlap. Completely consistent solutions will have one non-zero value in each row (or column), with the remaining elements being zero. High to moderate agreement is found when one or two of the clusters of one solution are split into a small number of
clusters in the other solution, leaving a relatively large number of zeros in the rows (or columns). Low agreement is seen when the cluster members of one solution are spread throughout a large number of clusters in the other solution, leaving few zero elements. Examination of Table 7 shows that most of the assignments were consistent in the Ward and K-means structures of the DOT jobs. The major differences are seen in the assignments in K-means clusters 4 and 5 and Ward clusters $1,\ 3,\$ and 6. If a set of job families were being developed for research or operational purposes, this Rand contingency table would be useful for understanding the differences in the two cluster structures and for Table 7. Rand Contingency Table Comparing DOT Ward and K-Means Solutions | Ward Clusters | | | | | | | | |---------------|-----|-----|-----|-----|-----|-----|-------------| | | CL1 | CL2 | CL3 | CL4 | CL5 | CL6 | Row
Sums | | CL1 | 2 | 36 | 0 | 8 | 0 | 0 | 46 | | CL2 | 24 | 0 | 0 | 4 | 0 | 0 | 28 | | CL3 | 0 | 3 | 4 | 0 | 19 | 0 | 26 | | CL4 | 0 | 0 | 67 | 0 | 0 | 0 | 67 | | CL5 | 0 | 0 | 0 | 43 | 0 | 0 | 43 | | CL6 | 1 | 0 | 0 | 15 | 13 | 0 | 29 | | CL7 | 0 | 1 | 0_ | 0 | 0 | 23 | 24 | | Column Sums | 27 | 40 | 71 | 70 | 32 | 23 | 263 | determining the final cluster memberships. For example, the fit of the discrepant jobs in the inconsistent clusters of the two structures could be evaluated through both qualitative and quantitative analysis. The qualitative analysis would rest upon comparing the congruence of the titles and performance requirements of the discrepant jobs with the other jobs in the clusters of each solution. Quantitative analysis would include evaluating the distance of each job from its cluster centroid in the two structures, and comparing each job's factors scores to the cluster average scores in the alternative solutions. The final assignments would place the jobs in the most similar cluster using researcher judgement or validation against an external criterion, e.g., classification efficiency. Tables 8 and 9 present the Rand_c contingency tables comparing the Ward and average linkage, and average linkage and K-means procedures, respectively, in the DOT data base. These comparisons also show fairly high overlap. The average linkage algorithm was not quite as consistent with the Ward method as the K-means procedure. Although they are both hierarchical algorithms, average linkage and Ward use different optimizing criteria for cluster assignment. The least similar solutions, average linkage and K-means, differ in whether the algorithm is hierarchical or non-hierarchical and in the optimizing criterion. Further examination of Tables 7, 8 and 9 shows that the Ward and K-means algorithms tended to produce clusters of about the same size, (between 23 and 71 jobs); while the average linkage method produced a large number of big clusters and a few small clusters with between 1 and 7 members. This pattern was also found for Project A jobs. Table 10 contains the Randc contingency table for the Ward and average linkage solutions in the Project A data, which also shows high overlap. Table 8. Rand Contingency Table Comparing DOT Ward and Average Linkage Solutions | Ward Clusters | | | | | | verag | e Lin | kage | Clust | ers | | | | | |---------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|----------|----------|----------|----------|-------------| | | CL
1 | CL
2 | CL
3 | CL
4 | CL
5 | CL
6 | CL
7 | CL
8 | CL
9 | CL
10 | CL
11 | CL
12 | CL
13 | Row
Sums | | CL1 | 33 | 0 | 1 | 0 | 0 | 12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 46 | | CL2 | 0 | 20 | 0 | 0 | 0 | 0 | 0 | 7 | 0 | 0 | 0 | 0 | 1 | 28 | | CL.3 | 0 | 0 | 18 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 4 | 0 | 0 | 26 | | CL4 | 0 | 0 | 0 | 67 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 67 | | CL5 | 0 | 0 | 0 | 21 | 22 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 43 | | CL6 | 0 | 1 | 0 | 0 | 12 | 0 | 16 | 0 | 0 | 0 | 0 | 0 | 0 | 29 | | CL7 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 18 | 0 | 2 | 0 | 24 | | Column Sums | 37 | 21 | 19 | 88 | 34 | 12 | 16 | 7 | 4 | 18 | 4 | 2 | 1 | 263 | Table 9. Rand Contingency Table Comparing DOT Average Linkage and K-Means Solutions | Average
Linkage
Clusters | | K-I | Means | Cluste | ers | | | |--------------------------------|-----|-----|-------|--------|-----|-----|-------------| | | CL1 | CL2 | CL3 | CL4 | CL5 | CL6 | Row
Sums | | CL1 | 0 | 26 | 0 | 8 | 0 | 3 | 37 | | CL2 | 21 | 0 | 0 | 0 | 0 | 0 | 21 | | CL3 | 0 | 4 | 4 | 0 | 11 | 0 | 19 | | CL4 | 0 | 0 | 67 | 21 | 0 | 0 | 88 | | CL5 | 0 | 0 | 0 | 34 | 0 | 0 | 34 | | CL6 | 2 | 10 | 0 | 0 | 0 | 0 | 12 | | CL7 | 0 | 0 | 0 | 3 | 13 | 0 | 16 | | CL8 | 3 | 0 | 0 | 4 | 0 | 0 | 7 | | CL9 | 0 | 0 | 0 | 0 | 4 | 0 | 4 | | CL10 | 0 | 0 | 0 | 0 | 0 | 18 | 18 | | CL11 | 0 | 0 | 0 | 0 | 4 | 0 | 4 | | CL12 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | | CL13 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | | Column Sums | 27 | 40 | 71 | 70 | 32 | 23 | 263 | Table 10. Rand Contingency Table Comparing Project A Ward and Average Linkage Solutions | and Average | | Ruge | | A., | 02200 | linkan | e Clus | tors | | | | |---------------|-----|------|-------|-----|-------|--------|--------|------|------|-------|------| | Ward Clusters | | | ····· | | | | | | C1 0 | C1 10 | C111 | | | CL1 | CL.2 | CL3 | CL4 | CL5 | CL6 | CL7 | CL8 | CL9 | CL10 | CL11 | | CL1 | 17 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | CL2 | 0 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | CL3 | 0 | 0 | 13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | CL4 | 0 | 0 | 0 | 23 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | CL5 | 0 | 0 | 0 | 0 | 11 | 0 | 0 | 0 | 0 | 0 | 0 | | CL6 | 0 | 0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 | 0 | 0 | | CL7 | 0 | 1 | 0 | 0 | 1 | 2 | 3 | 0 | 0 | 0 | 0 | | CL8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 20 | 0 | 0 | 0 | | CL9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 9 | 0 | 0 | | CL10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 14 | 0 | | CL11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 23 | | CL12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | CL13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | CL14 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | . 1 | | CL15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | CL.16 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | | CL17 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4_ | | Column Sums | 19 | 8 | 15 | 23 | 12 | 14 | 3 | 20 | 9 | 14 | 32 | Table 10 Con't. Rand Contingency Table Comparing Project A Ward and Average Linkage Solutions | Ward Clusters | | | | | Average | Linkage | e Cluste | ers | | | | |---------------|------|------|------|-------|---------|---------|----------|------|------|------|-------------| | | CL12 | CL13 | CL14 | CL.15 | CL16 | CL17 | CL18 | CL19 | CL20 | CL21 | Row
Sums | | CL1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 17 | | CL2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 7 | | CL3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 13 | | CL4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 23 | | CL5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 11 | | CL6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 12 | | CL7 | 0 | 0 | 0 | 3 | 3 | 6 | 4 | 3 | 0 | 2 | 28 | | CL8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 20 | | CL9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 9 | | CL10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 14 | | CL11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 23 | | CL12 | 16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 16 | | CL13 | 0 | 10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 10 | | CL14 | 0 | 0 | 31 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 32 | | CL15 | 0 | 0 | 0 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 6 | | CL16 | 0 | 0 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 13 | | CL17 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 14 | | Column Sums | 21 | 10 | 38 | 9 | 3 | 6 | 4 | 3 | 3 | 2 | 268 | #### Double Cross-Validation Figure 1 and Table 11 present the results of the double cross validation analysis of the DOT data. Figure 1 shows that the number of clusters obtained in each sample was different, and differed from the number obtained when the total population of jobs was clustered. The Ward and K-means procedures produced between 4 and 7 clusters, depending on the sample, and the average linkage procedure produced between 11 and 13 clusters. The intersections of the lines for the two samples and the population suggest there is an interaction between the sample and the clustering procedure. Figure 1. Number of Clusters in DOT Population and Cross Samples One and Two by Cluster Analysis Method Table 11 contains the average Rand $_{\rm c}$ values comparing the direct and indirect cluster solutions of cross-validation Samples One and Two. The results show low to moderate overlap in the structures. The lowest level of agreement in Samples One and Two was found for the K-means solutions. Examination of the Rand $_{\rm c}$ contingency table (not shown), from which the Rand $_{\rm c}$ value of .2447 was calculated, showed that there was a great deal of spread in the assignments across the K-means solutions. On the other hand, the Ward (Rand $_{\rm c}$ = .4272) and average linkage solutions (Rand $_{\rm c}$ = .5702) tended to have a large number of consistent classifications. When there were discrepancies, the jobs in a cluster in one sample tended to fall into two large groups, or into one large and one small group, in the other sample. Table 11. Rand Values Comparing Sample One and Sample Two Cluster Solutions in DOT Double Cross-Validation | Cluster Analysis Method | Rand
Values | |-------------------------|------------------| | Ward | .4272
(.7761) | | Average Linkage | .5702
(.8940) | | K-Heans | .2447
(.7173) | First value is Rand_c, value in parentheses is raw Rand. ### External Comparisons Two types of external comparisons were conducted. In the first, the DOT (total sample), and Project A cluster solutions were compared to the Army AA. The Rand values are shown in Tables 12 and 13, respectively. The overlap is quite poor, with Rand_c values of .2671 for K-means, .3225 for average linkage, and .3324 for Ward in the DOT data, and
.2475 for Ward and .2839 for average linkage in the Project A data. Table 14 provides a more detailed picture of the extent of differences between one of the cluster structures (Ward solution for DOT jobs), and the AA. The contingency table shows that the jobs in the nine AA are quite spread out across the empirical solution—there are relatively few zeros in any of the columns. This pattern is repeated in all the other contingency tables (not shown). Table 12. Rand Values Comparing DOT Empirical Cluster Solutions with Nine Army Aptitude Area Job Families^a | Cluster Analysis Method and
Number of Clusters | Rand
Values | |---|------------------| | Ward (7) | .3324
(.8110) | | Average Linkage (13) | .3225
(.8048) | | K-Means (6) | .2671
(.7755) | First value is Rand, value in parentheses is raw Rand. Table 13. Rand Values Comparing Project A Empirical Cluster Solutions with Nine Army Aptitude Area Job Families^a | Cluster Analysis Method and | Rand | |-----------------------------|------------------| | Number of Clusters | Values | | Ward (17) | .2475
(.8380) | | Average Linkage | .2839 | | (21) | (.8442) | First value is Rand, value in parentheses is raw Rand. The second set of external comparisons measured the congruence of the DOT and Project A structures using the 227 overlapping jobs (see Table 15). The Rand_c values of .1671 for the Ward clusters and .2143 for the average linkage clusters are also quite low. These results suggest that the type of job descriptor has a substantial impact on the composition of the clusters. However, differences in the samples of jobs also undoubtedly contribute to the low agreement. Table 14. Rand Contingency Table Comparing DOT Ward and Army Aptitude Area Job Families | | | Ar | ту Ар | titude | e Area | s | | | | |----|----------------------------------|------------------------------|---|--|--|---|--|---|--| | CL | CO | EL | FA | GM | MM | 0F | sc | ST | Row
Sums | | 14 | 1 | 4 | 0 | 5 | 2 | 2 | 3 | 15 | 46 | | 0 | 8 | 4 | 1 | 6 | 2 | 4 | 1 | 2 | 28 | | 2 | 1 | 0 | 2 | 1 | 0 | 0 | 1 | 19 | 26 | | 0 | 0 | 57 | 0 | 4 | 0 | 0 | 1 | 5 | 67 | | 0 | 0 | 11 | 0 | 4 | 26 | 0 | 0 | 2 | 43 | | 1 | 2 | 3 | 0 | 20 | 3 | 0 | 0 | 0 | 29 | | 3 | 0 | 1 | 0 | 0 | 0 | 3 | 0 | 17 | 24 | | 20 | 12 | 80 | 3 | 40 | 33 | 9 | 6 | 60 | 263 | | | 14
0
2
0
0
1
3 | 14 1 0 8 2 1 0 0 0 0 1 2 3 0 | CL CO EL 14 1 4 0 8 4 2 1 0 0 0 57 0 0 11 1 2 3 3 0 1 20 12 80 | CL CO EL FA 14 1 4 0 0 8 4 1 2 1 0 2 0 0 57 0 0 0 11 0 1 2 3 0 3 0 1 0 20 12 80 3 | CL CO EL FA GH 14 1 4 0 5 0 8 4 1 6 2 1 0 2 1 0 0 57 0 4 0 0 11 0 4 1 2 3 0 20 3 0 1 0 0 20 12 80 3 40 | CL CO EL FA GM MM 14 1 4 0 5 2 0 8 4 1 6 2 2 1 0 2 1 0 0 0 57 0 4 0 0 0 11 0 4 26 1 2 3 0 20 3 3 0 1 0 0 0 20 12 80 3 40 33 | CL CO EL FA GH MM OF 14 1 4 0 5 2 2 0 8 4 1 6 2 4 2 1 0 2 1 0 0 0 0 57 0 4 0 0 0 0 11 0 4 26 0 1 2 3 0 20 3 0 3 0 1 0 0 0 3 20 12 80 3 40 33 9 | CL CO EL FA GM MM OF SC 14 1 4 0 5 2 2 3 0 8 4 1 6 2 4 1 2 1 0 2 1 0 0 1 0 0 57 0 4 0 0 1 0 0 11 0 4 26 0 0 1 2 3 0 20 3 0 0 3 0 1 0 0 0 3 0 20 12 80 3 40 33 9 6 | CL CO EL FA GM MM OF SC ST 14 1 4 0 5 2 2 3 15 0 8 4 1 6 2 4 1 2 2 1 0 2 1 0 0 1 19 0 0 57 0 4 0 0 1 5 0 0 11 0 4 26 0 0 2 1 2 3 0 20 3 0 0 0 3 0 1 0 0 0 3 0 17 20 12 80 3 40 33 9 6 60 | CO=Combat EL=Electronics Repair FA=Field Artillery GM=General Maintenance MM=Mechanical Maintenance OF=Operators and Food SC=Surveillance and Communications ST=Skilled Technical Table 15. Rand Values Comparing DOT and Project A Cluster Structures^a | Cluster Analysis Method | Rand
Values | |-------------------------|------------------| | lard | .1671
(.8348) | | Average Linkage | .2143
(.8396) | First value is Rand_c, value in parentheses is raw Rand. #### CHAPTER IV #### DISCUSSION AND CONCLUSIONS The test of the proposed evaluation method suggests that it is a good validation and diagnostic tool for applied clustering problems. It can be used with any clustering procedure, ranging from rationally-derived clusters to factor analysis and hierarchical cluster analysis. Although it assumes that clusters are mutually exclusive, it can be used to identify overlapping job families. ### Internal Validity One of the most difficult tasks in cluster analysis is to select the number of clusters that provides the best representation of the underlying relationships among a set of objects, in our case jobs. This is especially difficult in applied research when the true cluster structure is unknown. Milligan and Cooper (1985) examined a large number of internal validity indexes with synthetic data where the true number of clusters was known. Two of the best were Gamma and CCC. Each measure uses a different approach for measuring the quality of a cluster structure. They found that when the indexes were inaccurate, Gamma tended to select solutions with too few clusters, while CCC selected solutions with too many clusters. Since the true cluster structures of our data are unknown, we could not compare the accuracy of the two indexes. Gamma demonstrated valuable properties as an internal validity index in this study. The values varied by the number of clusters, reaching a discernable peak, and either descended as the number of clusters increased, or remained at about the same level. In contrast, the CCC plots were fairly difficult to interpret. The CCC values generally increased as the number of clusters increased, showing no peaks. Therefore, the best cluster solution according to CCC was identified by looking for relatively large jumps in values greater than 2.0. The major advantage of the CCC index is its statistical interpretation. Research is needed to develop a statistical significance test for Gamma. Two potential approaches are discussed below under Future Research. Comparison of the Gamma and CCC plots for each cluster solution in Appendices B through D and G through L found that they were consistent for the Ward and K-means solutions, but that the indexes were somewhat conflicting for the average linkage solutions. It may be that the method of combining jobs into clusters used in the average linkage procedure (i.e., comparing the average distance between all pairs of jobs in each cluster), cannot be accurately evaluated by one or both of the indexes. Further research is needed to understand the relationship between the clustering criterion and the index of internal validity. The results of the cluster analyses showed that the number of groups varied across data base and clustering algorithm. The numbers obtained for
the DOT and Project A data bases were fairly consistent with the results of previous studies of the same data. The relatively large number of clusters we obtained for the synthetic validity OJI and CTI data differed from the results of Peterson et al. (1991), who found 3 and 4 clusters, respectively. ### Cluster Structure Consistency ## Comparison of Clustering Methods The comparisons of clustering algorithms produced four major findings. First, although the number and composition of the clusters differed somewhat with the clustering procedure, the jobs in both the DOT and Project A data bases had fairly stable cluster structures. If there were no clusters in the data, then the results of each procedure would be random and the expected Rando values would be zero. Second, the rank ordering of the $Rand_c$ values for the DOT cluster solutions shown in Table 5 suggests that the optimizing criterion used in a clustering procedure had a greater impact on the similarity of two cluster structures, than whether the algorithm was hierarchical or non-hierarchical. Third, Harvey (1986, 1991) hypothesized that the structure of job families is overlapping, rather than mutually exclusive. Given this hypothesis, the differences we found across clustering algorithms may be due, at least in part, to jobs that fit in more than one family. Procedures such as factor analysis and multidimensional scaling should be considered in future analyses of these and other Army job analysis data, because these clustering methods show the relationships of jobs to all groupings and do not force them into mutually exclusive clusters. Fourth, as expected, examination of the raw Rand values in all relevant analyses (comparisons of clustering procedures, cross-validation analysis and external comparisons), found a pattern of inflated values with low variance. The range for the corrected index was .1671 to .7087 across all analyses, while the range of the raw Rand was .7173 to .9681. The major limitation inherent in comparing cluster solutions of the same objects, when working with real data, is that we cannot know the true cluster structure. Consequently, we cannot determine which clustering procedure provides the best fit. In addition, we cannot determine the extent to which the differences in the results are attributable to the methods or to the structure in the data, e.g., overlapping clusters. Further analysis of the composition of the clusters, and of outliers, would provide more information about the possible sources of variation in the cluster results. In summary, the findings support the overall conclusion from the job family research reviewed in Chapter One that the choice of a clustering method is a complex decision. Garwood et al. (1991) found that the accuracy of different procedures depends on the selection of the job sample, the structure of the organization, and the purpose for which jobs are being clustered. They suggested, and the results of the present study support, a strategy of using several different clustering methods. The discrepancies across procedures should be resolved by expert judgement or external validation. #### Double Cross-Validation The purpose of the cross-validation analysis was to measure the extent to which the cluster results produced by each procedure could be replicated in different samples from the same population. If the cluster structure is stable across different samples, then we can be confident we obtained the true cluster solution. The disadvantage of cross-validation is that it requires the original sample (or population in our case) to be randomly divided in half, thereby, increasing the effect of sampling error. The absence of stability across the DOT samples was disappointing, and suggests that the sample is highly important in clustering job families. We can only speculate about the causes of variation. The fairly good stability seen in the first set of consistency analyses, i.e., across clustering procedures, indicates some stability in cluster structure. The discrepancies found in both sets of consistency analyses may be due to overlapping job families, or to the presence of outliers—jobs that do not fit well in any family and should be considered single—job families. Both situations would cause these jobs to be randomly clustered by different procedures and in different samples, thus producing low Rand $_{\rm c}$ values. Another potential cause of the low consistency in the cross samples could be that the clustering algorithms we examined are highly sensitive to the sample. This may be especially a problem for the K-means and Ward procedures, both minimum variance techniques, which have the lowest cross-validation Rand $_{\rm c}$ values. Given these results, we recommend that every attempt be made to obtain data on the total population of jobs, or that the sample be selected with great care when forming job families. Both Rosse et al. (1983) and Hoffman (1987) clustered the Project A data base. They obtained high overlap in the solutions, although Rosse et al. had a sample of 111 MOS, and Hoffman clustered the total population. The consistency of their results was probably, at least, partly due to the use of a factor analytic procedure that identifies jobs that fit into more than one job family, and relies on researcher judgement to make the job family assignments. The three procedures we studied were purely empirical approaches. When job families are developed for research or operational purposes, the results of clustering algorithms should be evaluated using expert judgement. Further, in an operational study, the cluster structure must be evaluated in terms of its effectiveness for satisfying an external criterion. Another approach to evaluating the stability of job clusters through cross-validation analysis would be to obtain multiple ratings on the job descriptors within each job. First, the sample would be randomly divided in half within the jobs, forming two samples containing all jobs, but with one-half the number of respondents in each sample. Then each sample would be clustered. The Rand_c index computed between the two samples would be the estimate of consistency. If the results were fairly stable, then the samples could be combined, and a final set of job families developed using all of the data. This approach was not possible in the present study because we had only mean scores on the variables in each data base. However, it would fit quite nicely with the typical job analysis procedure that obtains ratings on job descriptors from a sample (or the population) of job incumbents. ### External Comparisons ## Comparison of Empirical Clusters with Army AA Little congruence was found between the empirical cluster structures and the AA job families. The results were equally poor for the three clustering algorithms and the two data bases. Without conducting an external validation study, in which the empirical and existing AA clusters are evaluated against an external criterion, we cannot determine which set of clusters, if any, is effective for a particular purpose. The AA are used to reduce the complexity of the Army's personnel classification system, and any clusters designed to replace them should be evaluated in terms of their classification efficiency. Two studies (Johnson et al.,1992; Statman, 1993) indicate that the AA do not provide much classification efficiency. A small sample of MOS--18 of the 21 jobs in the synthetic validity study, were clustered using different approaches. Johnson et al. developed a hierarchical cluster analysis procedure that minimized the reduction in the differential validity of the set of prediction equations for the jobs as they were grouped into clusters. Statman used a factor analytic approach in which the prediction equations for the jobs were factored, and jobs were assigned to clusters according to their loadings on orthogonal factors. The results in both studies showed that increasing the number of job families, and configuring them to maximize differential validity, provided substantial increases in classification efficiency. The DOT and Project A clusters obtained in the present study were derived by different procedures, and based on different types of job information compared to the classification research. The low ${\rm Rand}_{\rm c}$ values provide limited support for the earlier classification studies in that the empirical clusters bear little relationship to the AA. Taken together, the present results, and those of Johnson et al. (1992) and Statman (1993), suggest that the number and composition of the AA should be reevaluated. ## Comparison of DOT and Project A Clusters The external comparisons between the DOT and Project A cluster structures found little congruence in both the Ward and average linkage cluster structures. The very low values suggest that the type of data (DOT factor scores vs. Project A SME groupings), has a strong effect on cluster structure. Given the need to develop job families that are efficient in accomplishing one or more organizational objectives, the type of job descriptor should reflect the important aspects of the personnel process for which the clusters are designed (Sackett, 1988). More research is needed on the relationship of different job descriptors to alternative personnel processes. Selection has received the most attention. Two studies described in Chapter One (Cornelius et al., 1984; Sackett et al., 1981), found that global job descriptors provide about the same cluster structure as more specific task descriptors. However, Stutzman (1983) demonstrated that task differences can be important in differentiating job families in some situations. Cornelius et al. (1979) also observed that job families developed for jobs requiring training after selection should be based on different descriptors than jobs that require immediate performance. Overall, there are no well researched guidelines at present on
the choice of the variables or clustering procedures for constructing job families for different purposes. ### Limitations of the Research There were several limitations of the present study. The first was the inability to conduct hypothesis testing. At present cluster analysis is an exploratory data analysis technique. A cluster structure is usually selected by subjective evaluation of the results on the part of the researcher by examining a tree diagram, assessing within and between cluster distances, or conducting a content analysis. The proposed cluster evaluation method used the Gamma and CCC indexes to select cluster structures. The Rand index was used as a measure of the agreement between two cluster solutions. Unfortunately, the sampling distributions of Gamma, the Rand index, and other measures of internal and external cluster validity, are unknown. Therefore, it was not possible to conduct statistical hypothesis testing, except for the internal validity analysis when the CCC statistic was available. This limitation was partially overcome by the two types of consistency analyses we conducted. The comparisons across clustering procedures, and the cross-validation analysis, provided a non-statistical method (i.e., replication analysis), for assessing whether the true cluster structure was recovered. However, replication analysis is limited in that the sources of error cannot be identified when there is little or no agreement between a pair of cluster structures (Milligan & Cooper, 1987). An external validation is needed in applied research settings to evaluate cluster structure against a relevant criterion. Another limitation of the study was that no outlier analyses were conducted to identify jobs that did not fit well into the clusters of any solution. Previous research (Jain & Dubes, 1988) indicates that excluding them from the analysis, or sometimes considering them as separate clusters, often improves the fit of the overall solution. Future application of the evaluation methodology should include outlier analysis. Lastly, no attempt was made to subjectively evaluate the differences in the cluster solutions obtained by the Ward, average linkage and K-means procedures. The cluster comparison analyses found that, although the three algorithms produced overlapping structures, there were discrepancies. If the evaluation method were used to develop a set of operational clusters, an important part of the development process would be to resolve the differences in the procedures through either expert judgement or external validation. #### Future Research One of the most important unresolved problems in cluster analysis is hypothesis testing (Sokal, 1988). Further research is needed to develop statistical procedures for evaluating the significance of the quantitative indexes examined in this study. Two approaches have been suggested (Jain & Dubes, 1988; Milligan & Cooper, 1987). The first is to use Monte Carlo procedures to generate a sampling distribution of multivariate random data having the same number of variables, means, variances and covariances as the empirical data. This is the method used with the CCC statistic we included in the internal validity analysis. A second approach is to use a permutation model, in which the observed value of an internal or external index is compared to a sampling distribution of 100 to 200 random cluster solutions of the data. Neither procedure has received much attention in the applied literature. Consequently, important questions (e.g., the appropriate random distribution for different data sets generated by a Monte Carlo procedure, and the relevant model of randomness for a permutation procedure), must be answered before statistical procedures can be developed. A second area of future research is the evaluation of the effectiveness of the Army AA and the CMF. The results of the external comparisons of AA with the empirical cluster solutions (combined with the previous research of Johnson et al., 1992, and Statman, 1993), indicate that the number and composition of the AA is probably not optimal for classification. A cluster analysis study that includes the following components is needed: 1) investigation of several different clustering strategies, 2) analysis of alternative types of job descriptors, and 3) an external validation. Given the structural changes currently taking place in MOS, and in the Army organization-wide, the CMF also should be reevaluated, and reconstructed, if necessary, to ensure their utility for force management, and career development and training. Examination of the range of CMF within the empirical cluster solutions in Appendices B through L found that the clusters were highly heterogeneous. Further research is needed to evaluate whether the clusters found in this study would be more effective than the existing CMF. Beyond job family research, the proposed cluster evaluation method would make an important contribution to any cluster analysis procedure by providing a quantitative basis for evaluating and validating cluster structures. A third area of future research is the use of the proposed method for clustering tasks, or other job descriptors, into jobs. Working at the job level, the method could be used to validate the basis for restructuring MOS during the current downsizing. An evaluation of existing tasks clusters, or development of new clusters, should examine the consistency of several different approaches. The finding that the average linkage algorithm produced more clusters than either the Ward hierarchical or the K-means procedures (both minimum variance techniques), indicates that the procedures are defining clusters in different ways. The results should be evaluated against an external criterion wherever possible to determine the best set of clusters. External validation may be difficult when designing new MOS and restructuring old ones. However, some attempt should be made to develop an external validation strategy within the practical constraints of project resources and time. Ratings of alternative cluster structures by SMEs, or work sample tests of the ease or difficulty of accomplishing the tasks in the clusters within a given time, are two possible approaches. A double cross-validation analysis also should be included in an MOS restructuring project to evaluate the stability of the cluster structures. If the clusters are stable in different samples, then they probably represent natural groupings of tasks. If the results are unstable, then the discrepancies between the samples should be evaluated. If a set of tasks appear to fall randomly into clusters in different samples (or with different procedures), then this could indicate the absence of a true cluster structure or the presence of overlapping groups. The assignments of the discrepant tasks could then be handled through a content analysis of the solutions and by considering practical issues. The last component of an MOS restructuring study should include external comparisons of the new task clusters with existing ones using the Rand, index, as we did in this study. This analysis would be a good diagnostic tool for assessing the effects of redesigning MOS when no external validation is possible. However, the ultimate test of utility will be their operational effectiveness. One final observation concerns the data bases we studied, each of which suffered from at least one important limitation. The DOT and Project A data included the population of Army jobs, but the job descriptors would be inadequate for forming job families for most purposes other than research. The DOT data base contains descriptors of civilian jobs that were matched to Army MOS, and consequently, may not be accurate reflections of the Army jobs. In many cases the same descriptors applied to many MOS, e.g., electronics jobs. The Project A data base consists of MOS groupings made by SMEs, which were used to form a distance matrix. These data do not provide individual variable scores for jobs and precluded some important analyses, i.e., the internal validity analysis based on the CCC index and the cross-validation. Although this data collection strategy requires less expenditure of project resources than a traditional job analysis study, it does not provide much information about the nature of the jobs. The synthetic validity data base contained detailed data on the relevance, importance and difficulty of 96 tasks for different components of the job, but the sample of 21 jobs would be too small for most operational studies. None of the data bases we analyzed contained multiple ratings within jobs, which precluded the use of a better cross-validation procedure that leaves the job sample intact, and divides the sample of incumbents in half within each job. More current and relevant job analysis information (on large samples, or the population of jobs), will be needed to support future research on, and changes in, Army jobs and job families. The job clustering studies reviewed in Chapter One, and the results we obtained, suggest strongly that special attention should be given to the linkage of job descriptors and clustering methods to the purpose for which jobs are being clustered. This includes considering the level of generality or specificity of the descriptor when selecting the job dimensions (e.g., tasks vs. behaviors vs. abilities), and developing the items. We obtained a relatively small number of clusters for the DOT jobs with all clustering procedures. Approximately twice as many were obtained in the Project A data, although 70% of the jobs were the same in the two data bases. Most of the difference was probably due to the type and level of specificity of job descriptors. #### REFERENCES - Aldenderfer, M.S. & Blashfield, R.K. (1984). <u>Cluster analysis</u>. Newbury Park: Sage Publications. - Alley, W.E., Treat, B.R., & Black, D.E. (1988). <u>Classification of Air Force</u> <u>jobs into aptitude
clusters</u> (AFHRL-TR-88-14). Brooks Air Force Base, TX: Air Force Human Resources Laboratory. - Arvey, R.D., Maxwell, S.E., Gutenberg, R.L., & Camp, C. (1981). Detecting job differences: A Monte Carlo study. <u>Personnel Psychology</u>, <u>34</u>, 709-730. - Arvey, R.D., Maxwell, S.E., & Mossholder, K.M. (1979). Even more ideas about methodologies for determining job differences and similarities. <u>Personnel Psychology</u>, 32, 529-538. - Arvey, R.D., & Mossholder, K.M. (1977). A proposed methodology for determining similarities and differences among jobs. <u>Personnel Psychology</u>, 30, 363-374. - Ballentine, R.D., Cunningham, J.W. Wimpee, W.E. (1992). Air Force enlisted job clusters: An exploration in numerical job classification. Military Psychology, 4(2), 87-102. - Blashfield, R.K. (1976). Mixture model tests of cluster analysis: Accuracy of four agglomerative hierarchical methods. <u>Psychological Bulletin</u>, 83(3), 377-388. - Campbell, J.P. (1990). An overview of the Army selection and classification project (Project A). <u>Personnel Psychology</u>, <u>43</u>, 231-239. - Cascio, W.F. (1987). <u>Applied psychology in personnel management</u>. (3rd ed.) Englewood Cliffs, NJ: Prentice-Hall, Inc. - Christal, R.E., & Weissmuller, J.J. (1988). Job-task inventory analysis. In S. Gael (ed.), The jobanalysis handbook for busineess, industry, and government: Volume II (pp. 1036-1050). New York: Wiley. - Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20, 37-46. - Colbert, G.A., & Taylor, L.R. (1978). Empirically derived job families as a foundation for the study of validity generalization. Study III. Generalization of selection test validity. <u>Personnel Psychology</u>, <u>31</u>, 355-364. - Cornelius, E.T., III, Carron, T.J., & Collins, M.N. (1979). Job analysis models and job classification. Personnel Psychology, 32, 693-708. - Cornelius, E.T., III, Hakel, M.D., & Sackett, P.R. (1979). A methodological approach to job classification for performance appraisal purposes. Personnel Psychology, 32, 283-297. - Cornelius, E.T., III, Schmidt, F.L., & Carron, T.J. (1984). Job classification approaches and the implementation of validity generalization results. <u>Personnel Psychology</u>, <u>37</u>, 247-259. - Cunningham, J.W., Wimpee, W.E. & Ballentine, R.D. (1990). Some general dimensions of work among U.S. Air Force enlisted occupations. <u>Military Psychology</u>, 2(1), 33-45. - Department of the Army (1986). <u>Enlisted career management fields and military occupational specialties</u> (Army Regulation 611-201). Washington, DC: Department of the Army. - Fraboni, M. & Cooper, D. (1989). Six Clustering algorithms applied to the WAIS-R: The problem of dissimilar cluster results. <u>Journal of Clinical</u> Psychology, 45(6), 932-935. - Garwood, M.K., Anderson, L.E., Greengart, B.J. (1991). Determining job groups: Application of hierarchical agglomerative cluster analysis in different job analysis situations. <u>Personnel Psychology</u>, <u>44</u>(4), 743-762. - Hanser, L.M., Mendel, R.M., & Wolins, L. (1979). Three flies in the ointment: A reply to Arvey and Mossholder. <u>Personnel Psychology</u>, <u>32</u>, 511-516. - Harris, D.A., McCloy, R.A., Dempsey, J.R., DiFazio, A.S., & Hogan, P. (1993). Personnel enlistment testing, job performance and cost: A costeffectiveness analysis. (Final Report FR-PRD-93-35 under Contract NO MDA903-91-C-0242.) Alexandria, VA: U.S. Army Research Institute for the Behavioral Sciences. - Harris, D.A., McCloy, R.A., Dempsey, J.R., Roth, C., Sackett P.R., & Hedges, L.V. (1991). <u>Determining the relationship between recruit characteristics and job performance: a methodology and a model</u>. (Final Report 90-17.) Washington, D.C.: Office of the Assistant Secretary of Defense, Force Management and Personnel. - Harvey, R.J. (1986). Quantitative approaches to job classification: A review and critique. <u>Personnel Psychology</u>, <u>39</u>, 267-289. - Harvey, R.J. (1991). Job analysis. In M.D. Dunnette & L.M. Hough (Eds.) Handbook of Industrial and Organizational Psychology (pp. 165-207). Palo Alto: Consulting Psychologists Press, Inc. - Headquarters, Department of the Army. (1992). Enlisted career management fields and military occupational specialties (AR 611-201 Revision). In Update 12-4: Military occupational classification structure. Washington, DC: Author. - Hoffman, R.G. (1987). <u>Clustering Army military occupational specialties for Project A: Phase II</u> (HumRRO Interim Report IR-PRD-87-22). Alexandria, VA: Human Resources Research Organization. - Hoffman, R.G., Fotouhi, C.H., Campshure, D.A., & Chia, W.J. (1991). Analysis of the Army Task Questionnaire. In L.L. Wise, N.G. Peterson, R.G. Hoffman, J.P. Campbell, & J.M. Arabian (Eds.), <u>Army synthetic validity project: Report of Phase III results, volume I</u> (ARI Technical Report 922). Alexandria, VA: U.S. Army Research Institute for the Behavioral and Social Sciences.(AD A226 355) - Hubert, L.J., & Arabie, P. (1985). Comparing partitions. <u>Journal of</u> Classification, 2, 193-218. - Jain, A.K, & Dubes, R.C. (1988). <u>Algorithms for clustering data</u>. Engelwood Cliffs, NJ: Prentice Hall. - Johnson, C.D., Zeidner, J., & Leaman, J.A. (1992). <u>Improving classification efficiency by restructuring Army job families</u> (ARI Technical Report 947). Alexandria, VA: US Army Research Institute for the Behavioral and Social Sciences. (AD A250 139) - Lancaster, A.R. (1984). <u>U.S. Department of Defense initiatives to enhance high school career exploration: An overview</u>. Paper presented at the 26th Annual Conference of the Military Testing Association, Munich, Federal Republic of Germany. - Laurence, J.H., & Hoffman, R.G. (nd). <u>A description and evaluation of selection and classification models</u>. Alexandria, VA: Human Resources Research Organization. - Lee, J.A., & Mendoza, J.L. (1981). A comparison of techniques which test for job differences. Personnel Psychology, 34, 731-748. - Lissitz, R.W., Mendoza, J.L., Huberty, C.J., & Markos, H.V. (1979). Some further ideas on a methodology for determining job similarities/differences. Personnel Psychology, 32, 517-528. - Lord, F.M. & Novick, M.R. (1968). <u>Statistical theories of mental test scores</u>. Menlo Park, CA: Addison-Wesley. - MacQueen, J.B. (1967). Some methods for classification and analysis of multivariate observations. <u>Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability</u>, <u>1</u>, 281-297. - Maier, M.H., & Fuchs, E.F. (1972). <u>Development and evaluation of a new ACB and aptitude area system</u> (Technical Note 239). Arlington, VA: US Army Behavioral Science Research Laboratory. (NTIS No. Ad-703 134). - Maier, M.H. & Grafton, F.C. (1981). <u>Aptitude composites for ASVAB 8, 9, and 10</u> (Research Report 1308.) Alexandria, VA: U.S. Army Research Institute for the Behavioral and Social Sciences. - McCormick, E.J. (1979). <u>Job analysis: Methods and applications</u>. New York: AMACOM. - McIntyre, R.M., & Blashfield, R.K. (1980). A nearest-centroid technique for evaluating the minimum-variance clustering procedure. <u>Multivariate</u> <u>Behavioral Research</u>, 15, 225-238. - McIntyre, R.M., & Farr, J.L. (1979). Comment on Arvey and Mossholder's "A proposed methodology for determining similarities and differences among jobs". Personnel Psychology, 32, 507-510. - Milligan, G.W. (1979). Ultrametric hierarchical clustering algorithms. Psychometrika, 44, 343-346. - Milligan, G.W. (1980). An examination of the effect of six types of error perturbation on fifteen clustering algorithms. <u>Psychometrika</u>, <u>45</u>, 325-342. - Milligan, G.W. (1981a). A Monte-Carlo study of 30 internal criterion measures for cluster-analysis. <u>Psychometrika</u>, <u>46</u>, 187-191. - Milligan, G.W. (1981b). A review of Monte Carlo tests of cluster analysis. Multivariate Behavioral Research, 16, 370-407. - Milligan, G.W. (1985). An algorithm for generating artificial test clusters. Psychometrika, 50, 123-127. - Milligan, G.W., & Cooper, M.C. (1985). An examination of procedures for determining the number of clusters in a data set. <u>Psychometrika</u>, <u>50</u>, 159-179. - Milligan, G.W. & Cooper, M.C. (1987). Methodology review: clustering methods. Applied Psychological Measurement, 11(4), 329-354. - Milligan, G.W., & Isaac, P.D. (1980). The validation of four ultrametric clustering algorithms. <u>Pattern Recognition</u>, <u>12</u>, 41-51. - Milligan, G.W., & Schilling, D.A. (1985). Asymptotic and finite-sample characteristics of four external criterion measures. <u>Multivariate</u> Behavioral Research 20, 97-109. - Milligan, G.W. & Sokol, L.M. (1980). A two-stage clustering algorithm with robust recovery characteristics. <u>Educational and Psychological</u> <u>Measurement</u>, 40, 755-759. - Milligan, G.W., Soon, S.C., & Sokol, L.M. (1983). The effect of cluster size, dimensionality, and the number of clusters on recovery of true cluster structure. <u>IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI 5</u>, 40-47. - Mobley, W.H. & Ramsay, R.S. (1973). Hierarchical clustering on the basis of inter-job similarity as a tool in validity generalization. <u>Personnel Psychology</u>, <u>26</u>, 213-225. - Office of the Assistant Secretary of Defense (Force Management and Personnel). (1987). Occupational conversion manual, enlisted/officer/civilian (DoD 1312.1-M). Arlington, VA: Defense Manpower Data Center. - Pearlman, K. (1980). Job families: A review and discussion of their implications for personnel selection. <u>Psychological Bulletin</u>, <u>87</u>(1), 1-28. - Peterson, N.G., Owens-Kurtz, C.K., & Rosse, R.L. (1991). Formation of job performance prediction equations and evaluation of their validity (chapter 4). In L.L. Wise, N.G. Peterson, R.G. Hoffman, J.P. Campbell, & J.M. Arabian (Eds.), <u>Army synthetic validity project: Report of Phase III results, volume
I</u> (ARI Technical Report 922). Alexandria, VA: U.S. Army Research Institute for the Behavioral and Social Sciences. (AD A235 635) - Rand, W.M. (1971). Objective criteria for the evaluation of clustering methods. <u>Journal of the American Statistical Association</u>, 66, 846-850. - Reynolds, D.H., Barnes, J.D., Harris, D.A & Harris, J.H. (1992). <u>Analysis and clustering of entry-level Navy ratings</u> (Report No. FR-PRD-92-20). Alexandria, VA: Human Resources Research Organization. - Rosse, R. L., Borman, W.C., Campbell C.H., & Osborn, W.C. (October, 1983). <u>Grouping Army occupational specialties by judged similarity</u>. Paper presented to the Military Testing Association Convention, Gulf Shores, Alabama. - SAS Institute Inc. (1990). <u>SAS/STAT User's Guide: Volume 1</u>. Cary, NC: SAS Institute Inc. - Sackett, P.R. (1988). Exploring strategies for clustering military occupations. In B.F. Green, Jr. & Alexandra K. Wigdor (Eds.), <u>Linking military enlistment standards to job performance: report of a workshop</u>. Washington, D.C.: National Academy Press. - Sackett, P.R., Cornelius, E.T., III, & Carron, T.J. (1981). A comparison of global judgment vs. task oriented approaches to job classification. Personnel Psychology, 34, 791-804. - Sarle, W.S. (1983). <u>Cubic clustering criterion</u>. SAS Technical Report A-108. Cary, NC: SAS Institute, Inc. - Scheibler, D. & Schneider, W. (1985). Monte Carlo Tests of the accuracy of cluster analysis algorithms: A comparison of hierarchical and nonhierarchical methods. <u>Multivariate Behavioral Research</u>, 20, 283-304. - Schoenfeldt, L.F. (1985). <u>Clustering military occupational specialties: A</u> review and critique. Washington, DC: Paper submitted to Committee on the Performance of Military Personnel, National Research Council, National Academy of Sciences. - Sokal, R.R. (1988). Unsolved problems in numerical taxonomy. In H.H. Bock (Ed.), <u>Classification and Related Methods of Data Analysis</u>. North-Holland: Elsevier Science Publishers, B.V. - Statman, M.A. (1993). <u>Improving the effectiveness of employment testing through classification</u>: Alternative methods of developing test composites for optimal job assignment and vocational counseling. Unpublished doctoral dissertation, George Washington University. - Stutzman, T.M. (1983). Within classification job differences. <u>Personnel Psychology</u>, <u>36</u>, 503-516. - Taylor, L.R. (1978). Empirically derived job families as a foundation for the study of validity generalization. Study I. The construction of job families based on the component and overall dimensions of the PAQ. <u>Personnel Psychology</u>, 31, 325-340. - Taylor, L.R., & Colbert, G.A. (1978). Empirically derived job families as a foundation for the study of validity generalization. Study II. The construction of job families based on the company-specific PAQ dimensions. Personnel Psychology, 31, 341-353. - U.S. Department of Labor, Employment and Training Administration (1977). <u>Dictionary of Occupational Titles</u> (4th ed.). Washington, D.C.: U.S. Government Printing Office. - <u>Uniform quidelines on employee selection procedures</u>. (1980). Washington, D.C.: The Bureau of National Affairs, Inc. - Wise, L.L., Peterson, N.G., Hoffman, R.G., Campbell, J.P., & Arabian, J.M. (Eds.). (1991). Army synthetic validity project: Report of Phase III Results, Volume 1 (ARI Technical Report 922). Alexandria, VA: US Army Research Institute for the Behavioral and Social Sciences. (AD A231 437) - Wright, G.J. (1984). <u>Crosscoding military and civilian occupational</u> <u>classification systems</u>. Paper presented at the 26th Annual Conference of the Military Testing Association, Munich Federal Republic of Germany. - Zimmerman, R., Jacobs, R., & Farr, J. (1982). A comparison of the accuracy of four methods of clustering jobs. Applied Psychological Measurement, $\underline{6(3)}$, 353-366. ## Appendix A MOS Titles, Aptitude Areas and Career Management Fields MOS Titles, Aptitude Areas and Career Management Field for 317 MOS in DOT, Project A and Synthetic Validity Data Bases | MOS | MOSTITLE | AAID | AATITLE | CMFNO | CMFTITLE | |------------|--|-------------|---|------------|---| | 00B
03C | Diver
Physical Activities Spec | 8 ts & | General Maintenance
Skilled Technical | 51
71 | General Engineering
Administration | | 050
050 | Kadio Uperator
Radio Teletype Operator | S
S | Surveillance/C | | | | 050 | EW/SIGINT Emitter ID/Locator | IS IS | Skilled Technical
Skilled Technical | 88 | Signs Int/Elect Warfare Oper
Signals Intel/Electronic Warfare Oper | | 054
054 | Signal Security Specialist FW/SIGINT Intercept-IMC | S | | 8. | Signs Int/Elect Warfare Oper | | 05K | EW/SIGINT N-M Interceptor | 8 | Combat | 86 | Signs Int/Elect Warfare Oper | | 118 | Infantryman | පුද | Combat | ≓ = | Intantry | | 110 | Indirect Fire Infantryman | 35 | Combat
Combat | == | Infancia | | H E | Heavy Anti-Armor Wpils IIII Cryman
Fishting Vehicle Infantryman | 38 | Combat | 11 | Infantry | | 12B | Combat Engineer | 8 | Combat | 12 | | | 120 | Bridge Crewman | 2 | Combat | 12 | | | 12E | Atomic Demo Munitions Spec | 88 | Combat | 12 | Combat Engineering | | 12F | Engineer Tracked Veh Crewman | 3 6 | Combat
Eiold Artillory | 71 | Field Artillery | | 138 | Cannon Crewman | . L | Skilled Technical | 112 | Field Artillery | | 135 | Cannon Fire Direction Specist | 2.5 | Skilled Technical | 13 | Field Artillery | | 13F | Fire Support Specialist | FA | Field Artillery | 13 | | | 13M | MLRS Crewmember | 9 | Operators/Food | 133 | | | 13R | Field Artlry Firefindr Rdr Op | Sc | Surveillance/Communication | £: | Field Artillery | | 150 | Lance Missile Crewmember | ÷ 5 | Operators/Food | | Field Artillery | | 15E | Pershing Missile Crewmember | 5 5 | Uperators/Food | 3 5 | Field Artillery | | 157 | MLRS/LANCE Ups/FireUir Spec | ¥ 12 | Operators/Food | 14 | Air Defence Artillery | | 160 | HENCOLES MISSILE OF CHINEMISCO
HENCHIES Fire Control Crewmhr | 9 P | Operators/Food | 14 | Air Defense Artillery | | 160 | HAWK Missile Crewmember | Ъ | Operators/Food | 14 | Air Defense Artillery | | 16E | HAWK Fire Control Crewmember | P. | Operators/Food | 14 | Air Defense Artillery | | 16F | Light Air Def Artillery Crewmbr | OF. | Operators/Food | 14 | | | 16н | | P. | Operators/Food | 7: | | | 16. | Def Acq Radar Operator | 5 5 | Uperators/Food | 1. | Air Defense Artillery | | 166 | Sgt York Air Det Gun Crwmbr | 5 5 | Operators/Food | <u> </u> | | | 16.0 | ADA SHOFT KANGE GUINELY CLEM | 5 ts | Operators/Food | 14 | Air Defense Artillery | | 165 | MANPADS Crewman | 8 | Operators/Food | 14 | Defense | | 16T | Patriot Missile Crewmember | OF | Operators/Food | 14 | Air Defense | | 178 | Field Artlry Radar Crwmbr | SC | Surveillance/Communications | E : | Field Artillery | | 170 | Field Artlry Target Acq Spec | 35 | Surveillance/Communications | 13 | FleId Artillery | | 17. | Aeriai Sensor Specialist | 2 2 | Skilled lecillical
Survaillance/Communications | 96 | Military Intelligence | | 190 | | 38 | Combat | 19 | Armor | | 19E | M48-M60 Armor Crewman | 8 | Combat | 19 | Armor | | 198 | MI ABRAMS Armor Crewman | 8 | Combat | 19 | Armor | | 216 | PERSHING Elec Materiel Spec | <u>تا</u> د | Electronics | 13 | nin/Con | | 211 | PERSHING Electronics Repairer | <u>.</u> | Electronics
Flactronics | 27 | Syst Dir/Gen Sunn | | 127
127 | NIKE 1831 EQUIPMENT REPAITED
NIKEHER Missile Launcher Benair | <u>.</u> | Electronics | 27 | Comb/Air Def Syst Dir/Gen Supp | | 1,11 | וווערוודיי יויסטייס בממוכייי יילביי | | | - | | MOS Titles, Aptitude Areas and Career Management Field for 317 MOS in DOT, Project A and Synthetic Validity Data Bases (Cont.) | MOS | MOSTITLE | AAID | D AATITLE | CMF NO | IO CMFTITLE | \neg | |-------|--|------------|----------------------------------|--------|---|----------| | | | | | | | Γ. | | 23N | NIKF Track Radar Repairer | П | Electronics | 77 | ddns | _ | | 231 | NIKF | E | Electronics | 27 | Land Comb/Air Def Syst Dir/Gen Supp Maint | | | 2000 | | ū | Flectronics | 23 | Air Defense System Maintenance | | | 744 | | ; <u></u> | Flortmoning | 23 | Air Defense System Maintenance | | | 74E | | 1 | Flectronics | 23 | Air Defense System Maintenance | | | 740 | _, . | 1 0 | | 22 | Land Comb/Air Def Svet Dir/Gen Supp Maint | | | 74H | | 1 : | | 2,5 | L L | | | 24. | _ | <u>ا</u> د | Electronics | 7,0 | Comb/Air Dof Syst Dir/Gon Supp | | | 24 | | 1 | Electronics | 75 | Syst Dir/Gen Supp | . ر | | 24L | ImpHAWK Launch&Mech Sys Repr | 딥 | Electronics | /7 | ddnc | | | 24M | _ | ᆸ | Electronics | 53 | Detense | _ | | 24N | _ | 딥 | Electronics | 23 | Defense System | | | 24P | _ | E | Electronics | 23 | Defense System | | | 240 | | ш | Electronics | 23 | Defense | | | 7 1 7 | | Ξ | Merhanical Maintenance | 23 | Defense | | | 147 | PAINTO UP & System Hechanic | ū | Flectronics | 23 | Defense | | | 240 | | 1 | Clocknonics | 3 | Defense System | - | | 74M |) Sgt Tork Air Dei Guil Syst fiel | <u> </u> | | } | | | | 757 | | <u>.</u> | ר ופר רו סוורט | 23 | Air Defense System Maintenance | | | 25L | | 15 | Electronics
Claised Tarkerson | 25 | Misus Information | | | 255 | | <u>ہ</u> ا | oxilled lecillicated | 3 2 | Visual IIII olimation | _ | | 26B | | 1 | Electronics | 67 | Signal Maintenance | | | 26C | : Tot Acq/Surveillance Rdar Rep | 냅 | Electronics | 67 | Signal Maintenance | | | 260 | _ | 급 | Electronics | 28 | Avia Comm/Electronics Systems Maintenance | <u> </u> | | 26F | | 딥 | Electronics | 33 | Electronic Warfare/Intercept Systems Mai | | | 26F | Aerial Photo-Activ Sensor Rep | 딥 | Electronics | 33 |
Electronic Warfare/Intercept Systems Mai | | | 264 | A Air Defence Radar Renairer | H | Electronics | 23 | Air Defense System Maintenance | | | 200 | / April Defende made model com | 20 | Surveillance/Communica | 78 | Avia Comm/Electronics Systems Maintenanc | | | 2 2 | Tactical Microwave Nort Renr | ū | Electronics | 53 | Signal Maintenance | | | 26M | | ш | Electronics | | • | | | 261 | Annial Curveillance Infrared Renr | <u>.</u> | Flectronics | | | | | 260 | | 1 | Flectronics | 31 | Signal Operations | | | 200 | | <u> </u> | Flectronics | 31 | | | | 261 | Codio/TV Systems Specialist | <u> </u> | Electronics | 52 | Visual Information | | | 260 | - : | ī | Electronics | 59 | Signal Maintenance | | | 264 | | | Electronics | 59 | Signal Maintenance | | | 270 | | IE | Flectronics | 27 | Land Comb/Air System Dir/Gen Supp Maint | _ | | 27.6 | I Landonbar Jystemicstopeeia | <u>.</u> | Flectronics | 27 | Comb/Air System Dir/Gen | | | 275 | MIII CAN Departmen | ū | Flectronics | 27 | Comb/Air System Dir/Gen | | | 2/2 | VOLCAN NOPATICI | i ti | Flectronics | 27 | Comb/Air System Dir/Gen Supp | _ | | 27.6 | JUNEAU CINING Cortion Departmen | ī | Flectronics | 27 | Comb/Air System Dir/Gen | | | 7/2 | TAME FILLING SECTION NEPAL FICE | 1 = | Floctmonics | 2 | Comb/Air System Dir/Gen Supp | | | 1/2 | LANCE System Repairer | <u>.</u> | Electionics
Flactronics | 2,5 | Comb/Air System Dir/Gen Sunn | | | 7/7 | M MILKS Repair of | 1 - | Flortropics | 2 | Comh/Air System Dir/Gen Supp | | | 7/7 | Y FOLWI'LL AI Ed A IEI CIIII Nai Nep | <u>.</u> | floctronics | 3.5 | Comh/Air System Dir/Gen Sunn | | | 1/7 | Softfork Kadar/Electron Repr | <u>.</u> | | 27 | Comb/Air System Dir/Gen Sunn | | | 76 | J SQLIOTK TEST SPECIALISE | <u> </u> | Flortmonics | 2 5 | System 2007 compression | | | 7.7 | E Kadlo Kepalrel
C Ciralo Channol Dadio Openator | 7 6 | Surveillance/Communica | 3 6 | Signal Operations | | | 77. | c siligle challier had to operate | 3 = | Flantroning | - | | | | 215 | U MODITE SUBSCITUEL EQUIPMENT.
E civid Dadio Depairer | <u> </u> | Flectronics | 53 | | | | 7 | ב ובוח עמחום עבלמיו כו | ; | | | | 7 | MOS Titles, Aptitutde Areas and Career Management Field for 317 MOS in DOT, Proejct A and Synthetic Validity Data Bases (Cont.) | | Maintain | | | | D AATITIE | CMENO | O CMETITIF | | |--|--|------------|--|-------------|-------------------|----------|---|---| | Electronics 25 Signal Baintenance | Electronics 25 Signal Membrane Electronics 25 Signal Membrane | MOS | MOSIIILE | ₹ | - 11 | 5 | - 11 | π | | | It is the control of o | 1.1 | Teletypewriter Repairer | E | Electronics | 53 | | | | | File Computer Sepainer | 2 ¥ | Combat Signaler | 딥 | Electronics | 31 | | | | Electronics 15 Signal Baintenance Electronics 25 Signal Baintenance Electronics 25 Signal Baintenance | Tatcled Connect Repairer E. Electronics 29 Signal Maintenance Field General Connect Repairer E. Electronics 29 Signal Maintenance 20 Sig | Ξ | Multichannel Commo Equip Op | 딥 | Electronics | E | _ | | | Field Systems Common Regarder E. Electronics 29 Signal Maintenance Tactical Common Systems Common Regarder E. Electronics 31 Signal Operations Station Technical Controller E. Electronics 31 Signal Operations Station Technical Controller E. Electronics 31 Signal Operations Fixed Ciphony Repairer E. Electronics 29 Signal Maintenance Fixed Ciphony Repairer E. Electronics 29 Signal Maintenance Fixed Station Redox Repairer E. Electronics 31 Skilled Technical Station Redox Station Redox Station Redox Station Redox Repairer Station Redox Repairer Station Redox Repairer Station Redox | Field General Commons Repairer E. Electronics 29 Signal Maintenance 20 Main | 31N | Tactical Circuit Controller | 딥 | Electronics | E 8 | | | | Teiled Commo Syst Op/Merical Statical Electronics Statical Commo Syst Op/Merical Electronics Statical Commo Syst Op/Merical Commo Special Statical Statical Commo Syst Op/Merical Special Statical Statical Statical Commo Special Statical Stati | Teled Systems Connect Repairer Electronics 15 Signal Operations Operation | 315 | Field General Comsec Repairer | 료 i | Electronics | 2 5 | | | | Tactical Commo Style Operation Controlled Controlle | Taticial Control let Electronics 31 Signal Operations Electronic control let Electronics 32 Signal Operations Electronics 32 Signal Operations 33 Signal Operations 33 Signal Operations 34 Signal Operations 34 Signal Operations 35 | 31T | Field Systems Comsec Repairer | <u></u> | Electronics | 2 5 | | _ | | Station refunical controller EL Flettronics Station refunical solution (see Jack Ciphony Repairer EL Flettronics Station refunical solution (see Jack Ciphony Repairer EL Flettronics Station Repairer EL Flettronics Repairer ST Skilled Technical Tech | Station Retained Logical Control of Fixed Cyplony Regainer | 310 | Tactical Commo Syst Op/Mech | 7 5 | Electronics | 3.5 | | _ | | Fixed Cipylon Repairer Fixed Cypto Equip Cypton System Rep Fixed Cypton Repairer F | Fixed Chipton Mation Repairer El Electronics 29 Signal National Mation Repairer El Electronic Marfare/Intercept 29 Signal National Mation Repairer Electronic Marfare/Intercept 29 Signal National Mation Repairer Electronic Marfare/Intercept 33 34 Electronic Marfare/Intercept 34 Electronic Marfare/Intercept 35 Electronic Marfare/Intercept 35 Electronic Marfare/Intercept 36 Electronic Marfare/Intercept 36 Electronic Marfare/Intercept 37 Marcharer 37 Marfare/Intercept 37 Marcharer 38 Electronic Marfare/Intercept 39 Signal Maintenance <td>320</td> <td>Station Technical Controller</td> <td>1</td> <td>Electronics</td> <td>7 6</td> <td></td> <td></td> | 320 | Station Technical Controller | 1 | Electronics | 7 6 | | | | Fixed Cryptic Euril Repairer El Hectronics Si Skilled Technical Skill | Fixed Crypto Edit Repairer Fixed Crypto Regulation Fixed Crypto
Regulation Fixed Crypto Regulation Fixed Station Madio Megairer Megairer Fixed Station Megairer Fixed Megai | 32F | Fixed Ciphony Repairer | <u> </u> | Flectronics | 2 8 | | | | Fixed Station Radio Register Ele Harcthonics Ele Harcthonics Ele Harcthonics Si Silled Technical Si Skilled Skill | Fixed Station Repairer | 326 | Fixed Crypto Equip Repairer | <u> </u> | Electronics | 2 5 | Signal Maintenance | | | Ele Mar/Int Stratebrooks&Stor Six Nilled Technical 33 Electronic Marfare Electronic Marfare Six Nilled Technical 33 Electronic Marfare Electronic Marfare Six Nilled Technical 33 Electronic Marfare Electronic Marfare Six Nilled Technical Nill | Electronic HarbocosSistor Stilled Technical 33 Electronic HarbocosTilled Technical 33 Electronic HarbocosTilled Technical 34 35 | 32H | Fixed Station Radio Repairer | <u></u> | Electronics | 67 | Maintenance | | | EW/Intropt And Systems Repairer Stilled Technical 33 Electronic Marfane(EW/Intercept No. Systems Repairer Stilled Technical 33 Electronic Marfane(EW/Intercept No. Systems Repairer Stilled Technical 33 Electronic Marfane(EW/Intercept No. Systems Rep E. Electronics 34 Electronic Marfane(EW/Intercept No. Systems Rep E. Electronics 34 Record Information 35 Electronic Marfane(EW/Intercept No. Systems Rep E. Electronics 34 Record Information 35 Electronic Marfane(EW/Intercept No. Systems Rep E. Electronics 34 Record Information 35 Electronics 36 Electronics 37 Electronics 38 Electronics 38 Electronics 39 | Fig. May Interforces.85(stor.) Stilled lectinical 33 Electronic Warfare/Intercept Strilled lectinical 33 Electronic Warfare/Intercept Strilled lectinical 33 Electronic Warfare/Intercept Strilled lectinical 34 Electronic Warfare/Intercept Strilled lectinical 35 Electronic Warfare/Intercept Strilled lectronic Strille | 33p | Ele War/Int StrRecv Subt Repr | S | Skilled Technical | 3 5 | Systems | _ | | Hyllurecept Asystems Repairer Electronic Antiack Electronic Astronic Marfarel Electronic Spilled Technical Si Skilled Technical Si Skilled Technical Electronic Spilled Technical MRK 500 computer Repairer Electronics Auto Digt Susse Message Switch Equip Electronics Electronics Auto Digt Susse Message Switch Equip Electronics Electronics Auto Digt Susse Message Switch Equip Electronics Electronics Electronics Automation Electronics Electronics Electronics Electronics Automatic Test Equip Repairer Electronics Avianc Rawlight Repairer Electronics Avianc Rawlight Repairer Electronics Electronics Avianc Rawlight Repairer Electronics Avianc Rawlight Repairer Electronics Electronics Avianc Rawlight Repairer Rawlight Repairer Electronics Avianc Rawlight | EVAINTED MAYSAGE | 330 | Ele War/Int StratProcess&Stor | S | Skilled lechnical | 35 | Wariare/Intercept Systems | | | He warfunt act systems Rep Fig. 1 Stilled lecthods and been Auto Serv Supp System E. Electronics been Auto Serv Supp System E. Electronics been Auto Serv Supp System E. Electronics Bear Auto Serv Supp System E. Electronics Bear Auto Serv Supp System E. Electronics Bear Auto Digt Subsc Message Switch Equip E. Electronics Bear Auto Digt Hessage Switch Equip E. Electronics Bear Automation Field Artiny Tact Fire Repairer E. Electronics Bear E. Electronics Specialist E. Electronics Specialist E. Electronics Specialist E. Electronics Biomedical Equipment Specialist E. Electronics | Electronic Station S | 33R | EW/Intrcpt AvSystems Repairer | 2 | Skilled lechnical | 3 5 | Mariare/Intercept Systems | _ | | Electronics 1 | Purch Card Machine Operation File Mar/Int Tat Systems Keep Electronics MCR 500 Computer Webside Electronics Dig Subsc Message Switch Equip Electronics Field Artil Py Digital System Electronics Field Artil Py Digital System Electronics Dig Subsc Message Switch Equip Electronics Electronics Dig Subsc Message Switch Equip Dig Medical Med | 338 | EW/Intercept Sys Repr | 7 5 | Skilled lechnical | 3 6 | Syctome | _ | | Punch Card Machine Operator Record Information RCR 500 Computer Repairer Systems Reper RCR 500 Field Arthry Digital Sys Rep R | Poend Auto Sarv Supp System EL Flectronics RE Soft Computer Regairer EL Flectronics RE Soft Computer Regairer EL Flectronics Auto Digt Message Switch Equip EL Flectronics Fled ArtlPy Objatal System EL Flectronics Fled ArtlPy Objatal System FLE Computer System Fled Fled Fled Fled Fled Fled | 33T | Ele War/Int Tact Systems Rep | 7 [| Skilled Jechnical | 3 5 | oy o cellis | _ | | Necon Muto Serv Supp Systm RE Electronics Auto Occomputer Repairer Electronics Auto Computer System Record Information Field Arthry Digital Sys Rep Fi | Record Information Operations Record Information Operations | 34B | Punch Card Machine Operator | <u>.,</u> | Electronics | , , | necold Information Operations | | | NRK 500 Computer Repairer Auto Digt Nassage Switch Equip Electronics Auto Digt Nassage Switch Equip Electronics Tact Computer Systems Repr Field Artiry Jugital Sys Rep Electronics Tact Computer Systems Repr Field Artiry Jugital Sys Rep Electronics Tact Computer Systems Repr Electronics Telectronics Special Elec Devices Repairer Electronics Calibration Specialist Electronics Calibration Specialist Electronics Avionic Commo Equip Repr Electronics Calibration Specialist Electronics Avionic Commo Equip Repr Electronics Calibration Specialist | MKR 500 compared by the parties of the computer Systems Report Electronics Auto Digt Message Switch Equip EL Electronics Auto Digt Message Switch Equip EL Electronics Field Artify Digital Systems Repressed Switch Equip EL Electronics Field Artify Digital Systems Repressed Switch Equip EL Electronics Talk Archity Digital Systems Repressed Switch Equip EL Electronics Talk Archity Digital Systems Repressed Systems Repressed Systems Repressed Systems Repressed Systems Repressed Electronics Instrument Repressed Systems Electronics Instrument Repressed Systems Electronics Systems Electronics Special Electronics Systems Special Systems Special Systems Special Systems Special Systems Systems Systems Septial Maintenance Electronics Systems S | 34C | Decen Auto Serv Supp Systm | <u></u> | Electronics | * * | Information | | | Digt Subsc Message Switch Equip Ell Electronics Field Arthry Digital Sys Rep Fie | Digit Subscribes Sage Switch Equip EL Electronics Field Artly Digital Sys Rep Field Artly Digital Sys Rep Field Artly Digital Sys Rep EL Electronics Artly Digital Sys Rep Field Special Field Artly Digital Special Field Artly Digital Special Field Field Artly Digital Special Field | 34E | NCR 500 Computer Repairer | | E lectronics | 7 5 | Information | | | Field Artiny Digital Sys Rep Electronics Field Artiny lactfire Repair Electronics Electronics Field Artiny lactfire Repair Electronics Electronics Field Artiny lactfire Repair Electronics Field Artiny lactfire Repair Electronics Electronics Field Artiny lactfire Repair Avionic Many/FightContEq Repr Electronics Field Artiny lactfire Rep Field Artiny lactfire Rep Field Artiny lactfire Rep Field Field Repair Field Field Field Repair Field Fi | Auto Digit Message Switch Equip Electronics 74 Nectron Information Operations 75 | 34F | Digt Subsc Message Switch Equip | <u>تا</u> ز | Electronics | 7.5 | Information | | | Field Artity Digital Sys Rep EL Electronics Field Artity Digital Sys Rep Field Artity Tactfire Repair EL Electronics Special Electronics Specialist EL Electronics Special Electronics Specialist EL Electronics Blomedical Equipment Specialist EL Electronics Blomedical Equipment Specialist EL Electronics Blomedical Equipment Specialist EL Electronics Avionic Marchial Repairer EL Electronics Avionic Marchial Repairer EL Electronics Avionic Marchial Repairer EL Electronics Avionic Marchial Rep EL Electronics Avionic Marchial Rep EL Electronics Avionic Marchial Rep EL Electronics Avionic Marchial Centrol Office Rep EL Electronics Cable Splicer EL Electronics EL Electronics Cable Splicer EL Electronics EL Electronics EL Electronics Cable Splicer EL Electronics EL Electronics EL Electronics Cable Splicer EL Electronics EL Electronics Cable Splicer EL Electronics EL Electronics EL Electronics Cable Splicer EL Electronics EL Electronics EL Electronics Cable Splicer EL Electronics EL Electronics Cable Splicer EL Electronics EL Electronics EL Electronics Cable Splicer EL Electronics EL Electronics Cable Splicer Sp | Field Artlry lactfire Repair Tact Computer Systems Repr Field Artlry lactfire Repair Tact Computer Systems Repr Field Artlry lactfire Repair Tact Computer Systems Repr Field Artlry lactfire Repair Electronics Field Artlry lactfire Repair Electronics Field Artlry lactfire Repr Field Fection Repries Field Fection Repries Field Fection Repr Field Artlry lactfire Repr Field Fection Recruits Field Fection Recruits Field Fection Recruits Field Fection Recruits Field Fection Recruit Recruits Field Fection Fection Fection Fection Fection Fection Fection Fect | 34H | Auto Digt Message Switch Equip | 료 i | E lectronics | 7 4 | Information | | | Tact Computer Systems Reprint Lettronics Field Artily Tactfire Repair Electronics Instrument Reprint Electronics Automatic Test Equip Repairer Electronics Electronics Specialist Electronics Biomedical Equipment Specialist Electronics Avionic Marchanic Mechanic Avionic Commo Equip Reprint Electronics Avionic NavFlightContEq Reprint Electronics Avionic Specialist Cable Splice Electronics Avionic Specialist Avio Comm/Electronics Avio Comm/Electronics Avio Comm/Electronics Avio Comm/Electron | Tart Computes Systems Repr Field Arthy Tackfire Repairer Electronics Instrument Repr Electronics Instrument Repried Arthy Tackfire Repairer Electronics Instrument Repried Electronics Instrument Special Electronics Avionic University Repried Electronics Special Electronics Special Electroni | 34L | Field Artlry Digital Sys Rep | 교 (| Electronics | 7 7 | Information | | | Field Artiv Jactfire Repair Field Artiv Jactfire Repair Electronics Electronics Special Elec Devices Repairer EL Electronics Special Elec Devices Repairer EL Electronics Special Elec Devices Repairer
EL Electronics Bloomedical Equipment Spec Calibration Specialist Electronics Avionic Mechanic Avionic May/FlightConteq Repr Avionic Special Equipment Avionic Special Equipment Avionic May/FlightConteq Repr EL Electronics Avionic May/FlightConteq Repr EL Electronics Avionic Special Equipment EL Electronics Avionic May/FlightConteq Repr EL Electronics Avionic May/FlightConteq Repr May/FlightConteg Repr EL Electronics Avionic May/FlightConteg Repr EL Electronics Avionic May/FlightConteg Repr | Field Artiry lactive Repair ELECtronics ELECtronics Instrument Repair ELECtronics Instrument Repair ELECtronics Special ELECtronics Special Electronics Specialist ELECTRONICS Special ELECTRONICS Avionic Many FlightContEq Repr Avionic Many FlightContEq Repr ELECTRONICS Flight Fl | 34T | Tact Computer Systems Repr | <u> </u> | E lectronics | 7 5 | Information | | | Electronics Instrument Reproduction Sequence Control C | Electronics Instrument Repraction of Special Strument Repraction of Special Strument Repraction of Special Strument Repraction of Special Strument Special Strument Splicer Special Splicer Splice | 34γ | Field Artlry TactFire Repair | ゴ : | ١ | * | ווטו טווווס וווון | | | Automatic lest Equip Repairer EL Electronics Special Elec Davices Repairer EL Electronics Biomedical Equipment Spec EL Electronics Biomedical Equipment Specialist EL Electronics Calibration Specialist EL Electronics Avionic Mechanic Avionic Mechanic EL Electronics EL Electronics Avionic Mechanic EL Electronics Avionic Nav/FlightContEq Repr EL Electronics Avionic Special Equip Repr EL Electronics Cable Splicer Cable Splicer EL Electronics Cable Splicer EL Electronics Cable Splicer EL Electronics Cable Splicer Cable Splicer Cable Splicer EL Electronics Cable Splicer Cable Splicer Cable Splicer EL Electronics Cable Splicer Cable Splicer Cable Splicer Cable Splicer EL Electronics Cable Splicer Cable Splicer Cable Splicer Cable Splicer Cable Splicer Cable Splicer EL Electronics Cable Splicer | Auto Comm Comp Specialist Electronics Special Biomedical Equipment Spec Electronics Electronics Avionic Medical Avience Electronics Avionic Medical Electronics Avionic Medical Electronics Avionic Medical Electronics Avionic Medical Avionic Medical Electronics Avionic Medical Electronics Electronics Electronics Comm Comm Comm Comm Specialist Electronics Dial/Manual Centrl Office Rep Electronics Electronics Dial/Manual Centrl Office Rep Electronics Electronics Dial/Manual Centrl Office Rep Electronics Electronics Dial/Manual Centrl Office Rep Object Repairer Electronics Avionic Medical Dial/Manual Centrl Office Rep Electronics Electroni | 35B | Electronics Instrument Repr | 그 : | | 7,4 | Docond Information Operations | | | Special Electronics Specialist LE Electronics Biomedical Equipment Spec Calibration Specialist EL Electronics Calibration Specialist EL Electronics Avionic May FlightConteq Repr Avionic Special Equipment Spec EL Electronics Avionic Commo Equipment Specialist EL Electronics Avionic Special Equipment Specialist EL Electronics Avionic Specialist EL Electronics Avionic Specialist EL Electronics Avionic Specialist EL Electronics Avionic Specialist EL Electronics Bial/Maintenance Cable Splicer Dial/Manual Central Office Rep EL Electronics Dial/Manual Central Office Rep EL Electronics EL Electronics IT ans Elects Specialist IT ans Elects Specialist IT ans Elects Specialist IT ans Elects Specialist IT ans Electronics IT ans Elects Specialist IT ans Electronics IT ans Ele | Special Liec Devices Kepairer Nuclear Heapons Electronics Specialist Electronics Specialist Electronics Specialist Electronics Specialist Electronics Specialist Electronics Specialist Electronics Systems Avionic Como Equip Repairer Electronics Systems Avionic Menhaic Electronics Systems Avionic Como Equip Repriment Electronics Systems Avionic Manual Comm/Electronics Systems Avionic Como Equip Repriment Electronics Systems Avio Comm/Electronics Systems Blectronics Systems Blectronics Systems Avio Comm/Electronics Systems Blectronics Systems Blectronics Systems Avio Comm/Electronics Systems Blectronics Blectron | 350 | Automatic lest Equip Repairer | <u> </u> | | 2 2 | Cignal Maintenance | | | Noticear Weapons Flectronics Specialist Electronics Specialist Electronics Solutions Specialist Electronics Calibration Specialist Electronics Avionic Mechanic Avionic Mechanic Specialist Electronics Avionic Mechanic Specialist Electronics Electronics Avionic May Flectronics Avionic May Flectronics Avionic May Flectronics Electronics Avionic Specialist Electronics Avionic Specialist Electronics Avionic Specialist Electronics Antenna Installer Specialist Electronics Electronics Antenna Installer Specialist Electronics Electronics Antenna Installer Specialist Electronics Electr | Medical Regions Electronics Electronic | 35E | Special Elec Devices Repairer | <u>.</u> | | 63 | Jugilar Flatiliceilairce | | | Electronics Avionic Maintenance Calibration Specialist Electronics Avionic Methanics Secialist Electronics Avionic Methanics Calibration Specialist Electronics Avionic Methanic Commo Equip Reproserve Electronics Electronics Avionic Special Equip Reproserve Electronics Commo Equip Reproserve Electronics Electronics Avionic Special Equip Reproserve Electronics Electronics Avionic Special Equip Reproserve Electronics Electronics Cable Splicer Cable Splicer Electronics Auto Comm Comp Syst Repairer Electronics GM General Maintenance GM General Maintenance Electronics Auto Comm Comp Specialist Electronics GM General Maintenance Electronics Audio/Visual Equip Repairer Audi | Biomedical Equipment Spec Electronics Signature Signature Electronics Signature Electronics Signature Signature Electronics Signature | 35 | Nuclear Weapons Electronics Specialist | វ ច | | 0 | Modical | | | Avionic Mechanic Avia Comm/Electronics Avionic Commo Equip Repairer Electronics Avionic Commo Equip Repairer Electronics EL Electronics Avionic Commo Equip Repairer EL Electronics Avionic Special Equip Reproservator EL Electronics Avionic Special Equip Reproservator EL Electronics Avionic Special Equip Reproservator EL Electronics Antenna Installer Specialist EL Electronics Auto Comm Comp Specialist Commo | Avionic Domo Equip Repairer Avionic Commo Equip Repairer EL Electronics Avionic Commo Equip Repairer EL Electronics Avionic Commo Equip Repairer EL Electronics Avionic Special Equip Repr EL Electronics Antenna Installoperations EL Electronics Cable Splicer Dial/Manual Central Office Rep EL Electronics Dial/Manual Central Office Rep EL Electronics EL Electronics Dial/Manual Central Operations EL Electronics EL Electronics Trans Electsystems Operations EL Electronics Trans Electsystems Operations Auto Comm Comm Comp Syst Repairer EL Electronics Trans Electsystems Operations EL Electronics Trans Electsystems Operations Auto Comm Comp Syst Repairer EL Electronics Trans Electsystems Operations EL Electronics Trans Electsystems Operations Trans Electsystems Operations EL Electronics Trans Electsystems Operations Trans Electronics Trans Electsystems Operations Trans Electronics Trans Electsystems Operations Trans Electronics Tran | 356 | Biomedical Equipment Spec | | | 3.5 | Flectronic Maintenance | | | Avionic Mechanic Avionic Commo Equip Repairer EL Electronics Avionic Special Equip Repr EL Electronics Antenna Installoperator EL Electronics Antenna Installoperator EL Electronics Cable Splicer Cable Splicer Cable Splicer Cable Splicer Cable Splicer EL Electronics EL Electronics EL Electronics EL Electronics Cable Splicer Cable Splicer EL Electronics EL Electronics EL Electronics EL Electronics Cable Splicer Spl | Avionic Commo Equip Repairer Avionic Commo Equip Repairer Avionic Commo Equip Repairer Avionic Commo Equip Repairer EL Electronics Avionic Commo Equip Repr Hire Systems Avionic Special Equip Repr Hire System Installer Specialist EL Electronics Avionic Special Equip Repr Hire System Installer Specialist EL Electronics Cable Splicer Cable Splicer Incircal Wire Operations Specialist EL Electronics EL Electronics EL Electronics Cable Splicer Incircal Wire Operations Specialist EL Electronics EL Electronics Incircal Wire Systems Operations EL Electronics Incircal Wire Systems Operations Hire Systems Operations EL Electronics Incomo Comm Operations Information Incomo Operations Information I | HGC
HGC | Calibration Specialist | <u>.</u> | | 2 8 | Avia Comm/Flectronics Systems Maintenance | | | Avionic Commic Haller Space Electronics 28 Avia Comm/Electronics 28 Avia Comm/Electronics 28 Avia Comm/Electronics 28 Avia Comm/Electronics 29 20 A | Avionic County Charles Repaired Avionic Special Editionated Reprint Electronics Avionic Special Editionated Reprint Electronics Avionic Special Equip Reprint Electronics EL Auto Comm Comp Syst Repairer GM General Maintenance GM General Maintenance EL Electronics EL Electronics GM General Maintenance GM General Maintenance Comm Comp Repairer EL Electronics GM General Maintenance CM Mainte | 25 | AVIONIC MECHANIC | | | 2 8 | | | | Avionic Mayor High Commoderation Services and Equip Repairer Avionic Special Equip Repairer Cable System Installer Special Spe | Avionic Spacial Equip Reproduces Avionic Space and Installer Special Equip Reproduces By the System Installer Special Equip Reproduces By the System Installer Special Equip Reproduces By the Special Equip Reproduces By the System Installer Special Equip Reproduces By the System Installer Special Equip Reproduces By the System Instru Rep Special Equip Reproduces By the Systems Operations Special Equip Reproduces By the Systems Operations Special Equip Reproduces By the Systems Operations Special Equip Reproduces By the Systems Operation th | JOE | | <u> </u> | _ | 82 | Comm/Electronics Systems | | | Wire System Installoperator Antenna Installoperator EL Electronics Antenna Installoperator EL Electronics Cable Splicer Dial/Manual Central Office Rep EL Electronics Trans ElectswitchSys Rep Wire Systems Operations Specialist EL Electronics
Auto Comm Comm Comm Comm Comm Comm Comm Co | Wire System Installoperator Antenna Installoperator Antenna Installoperator Antenna Installoperator EL Electronics Cable Splicer Cable Splicer Cable Splicer Cable Splicer Dial/Manual Central Office Rep Tactical Wire Operations Specialist Trans ElectswitchSys Rep Auto Comm Comp Systems Operator Auto Comm Comp Systems Operator EL Electronics EL Electronics EL Electronics EL Electronics EL Electronics GM General Maintenance GM General Maintenance EL Electronics GM General Maintenance Contral Instru Rep Spec EL Electronics Audio/Visual Equip Repairer EL Electronics GM General Maintenance CAUGON Control | 350 | | i ii | | 88 | Comm/Electronics Systems | | | Antend Installer Specialist Cable Splicer Cable Splicer Dial/Manual Central Office Rep Tactical Wire Operations Specialist Trans ElectSwitchSys Rep Wire Systems Operator EL Electronics EL Electronics EL Electronics EL Electronics EL Electronics CM General Maintenance GM General Maintenance EL Electronics CM General Maintenance CM General Maintenance EL Electronics Maintenance Maintenanc | Antenna Installer Specialist Cable Splicer Cable Splicer Dial/Manual Central Office Rep Tactical Wire Operations Specialist Trans ElectSwitchSys Rep Wire Systems Operator Auto Comm Comp Syst Repairer Fire Contral Instru Rep Spec Audio/Visual Equip Repairer Audio/Visual Equip Repairer Fire Contral Counce Photo Equip Repr GM General Maintenance EL Electronics GM General Maintenance EL Electronics GM General Maintenance Main | 36.7 | | ū | | 31 | | | | Cable Splicer Cable Splicer Dial/Manual Central Office Rep Tactical Wire Operations Specialist Trans ElectSwitchSys Rep Wire Systems Operator Auto Comm Comp Syst Repairer Topographic Instra Rep Spec Fire Contral Instru Rep Spec Audio/Visual Equip Repairer Audio/Visual Equip Repairer Audio/Visual Equip Repairer Electronics Electr | Cable Splicer Cable Splicer Dial/Manual Central Office Rep Tactical Wire Operations Specialist Trans ElectSwitchSys Rep Wire Systems Operator Auto Comm Comp Syst Repairer Tropographic Instru Rep Spec Audio/Visual Equip Repairer Audio/Visual Equip Repairer Audio/Visual Equip Repairer Audio/Visual Equip Repairer Control Instru Rep Spec Audio/Visual Equip Repairer EL Electronics EL Electronics EL Electronics GM General Maintenance EL Electronics GM General Maintenance M | 360 | Antenna Installer Specialist | <u> </u> | _ | | | | | Dial/Manual Central Office Rep Tactical Wire Operations Specialist FL Electronics Trans ElectSwitchSys Rep Wire Systems Operator FL Electronics EL Electronics EL Electronics EL Electronics EL Electronics EL Electronics EL Electronics Addio/Visual Equip Repairer EL Electronics EL Electronics Addio/Visual Equip Repr | Dial/Manual Central Office Rep Tactical Wire Operations Specialist Trans ElectSwitchSys Rep Wire Systems Operator Auto Comm Comm Comp Syst Repairer Topographic Instru Rep Spec Fire Control Instru Rep Spec Audio/Visual Equip Repairer Addio/Visual Equip Repairer GM General Maintenance EL Electronics Addio/Visual Equip Repairer GM General Maintenance EL Electronics GM General Maintenance | 36F | Cable Splicer | ᇤ | | | | | | Tactical Wire Operations Specialist FL Electronics Trans ElectSwitchSys Rep Wire Systems Operator Auto Comm Comp Syst Repairer Topographic Instru Rep Spec Fire Control Instru Rep Spec Audio/Visual Equip Repairer Audio/Visual Equip Repairer FL Electronics GM General Maintenance FL Electronics 63 63 64 65 65 66 66 67 66 68 68 69 69 69 69 69 69 69 69 69 69 69 69 69 | Tactical Wire Operations Specialist Trans ElectSwitchSys Rep Wire Systems Operator Wire Systems Operator Auto Comm Comp Syst Repairer Topographic Instru Rep Spec Fire Control Instru Rep Spec Addio/Visual Equip Repairer Addio/Visual Equip Repairer Addio/Visual Surveillance Photo Equip Repr GM General Maintenance EL Electronics Addio/Visual Equip Repairer GM General Maintenance | 36H | | <u> </u> | | 53 | Signal Maintenance | | | Irans ElectSwitchSys Rep Wire Systems Operator Auto Comm Comp Syst Repairer Topographic Instr Rep Spec Fire Control Instru Rep Spec Audio/Visual Equip Repairer Audio/Visual Equip Repr Fire Control Instruce Photo Equip Repr Fire Control Instruce Rep Spec Fire Control Instruce Repairer Fire Control Instruce Repit Repr Fire Control Instruce Repit Repr Fire Control Instruce Repot Fire Fire Control Maintenance Fire Control Instruce Reprise Fire Fire Fire Control Instruce Reprise Fire Fire Control Instruce Reprise Fire Fire Control Instruce Reprise Fire Fire Fire Fire Fire Fire Fire Fir | Irans ElectSwitchSys Rep Wire Systems Operator Auto Comm Comp Syst Repairer FL Electronics Auto Comm Comp Syst Repairer Fire Control Instru Rep Spec Audio/Visual Equip Repairer Audio/Visual Equip Repairer Aerial Surveillance Photo Equip Repr Office Machine Repairer Office Machine Specialist EL Electronics CM General Maintenance CEL Electronics CM General Maintenance MAINTENANCE MAINTENANCE MAINTENANCE MAINTENANCE MAINTENANCE MAINTENANCE MAINTENANCE MAINT | 36K | | 四 | _ | _ | | | | Auto Comm Comp Syst Repairer EL Electronics Auto Comm Comp Syst Repairer EL Electronics Topographic Instru Rep Spec Fire Control Instru Rep Spec Audio/Visual Equip Repairer EL Electronics Addio/Visual Equip Repr Fire Control Instru Rep Spec Fire Control Instru Repr Fire Control Instruction Rep | Auto Comm Comp Syst Repairer Auto Comm Comp Syst Repairer Topographic Instr Rep Spec Fire Contrl Instru Rep Spec Audio/Visual Equip Repairer Audio/Visual Equip Repairer Aerial Surveillance Photo Equip Repr Office Machine Repairer Office Machine Specialist EL Electronics EL Electronics EL Electronics GM General Maintenance 63 63 64 66 66 67 68 69 69 | 361 | - | 피 | _ | 33 | | | | Auto Comm Comp Syst Repairer Topographic Instr Rep Spec Fire Control Instru Rep Spec Audio/Visual Equip Repairer EL Electronics CM General Maintenance 63 63 64 64 65 65 66 66 66 67 66 67 67 67 67 67 67 67 67 | Auto Comm Comp Syst Repairer EL Electronics 29 Topographic Instr Rep Spec GM General Maintenance 81 Fire Control Instru Rep Spec GM General Maintenance 63 Audio/Visual Equip Repairer EL Electronics EL Electronics 63 Arial Surveillance Photo Equip Repr EL Electronics 63 GM General Maintenance 63 CM GENER | 36M | _ | ū | _ | 33 | | | | Topographic Instr Rep Spec GM General Maintenance 81 Fire Contrl Instru Rep Spec GM General Maintenance 63 Audio/Visual Equip Repairer EL Electronics 25 Actial Surveillance Photo Equip Repr EL Electronics 63 | Topographic Instr Rep Spec GM General Maintenance 81 Fire Contrl Instru Rep Spec GM General Maintenance 63 Audio/Visual Equip Repairer EL Electronics 25 Aerial Surveillance Photo Equip Repr CM General Maintenance 63 Aerial Surveillance Photo Equip Repr CM General Maintenance 63 | 396 | | ᇤ | ш | £2
— | • | | | Fire Control Instructive Rep Spec GM General Maintenance 63 Audio/Visual Equip Repairer EL Electronics 25 Actial Surveillance Photo Equip Repr EL Electronics 63 CM General Mintenance 65 63 64 64 65 65 65 65 65 65 65 65 65 65 65 65 65 | Fire Control Instruction Repairer Audio/Visual Equip Repairer Audio/Visual Equip Repairer Aerial Surveillance Photo Equip Repr Office Machine Repairer | 418 | | 5 | _ | 8 | | | | Audio/Visual Equip Repairer EL Electronics 25 Aerial Surveillance Photo Equip Repr EL Electronics 63 | Audio/Visual Equip Repairer EL Electronics 25 Aerial Surveillance Photo Equip Repr EL Electronics 63 Office Machine Repairer GM General Maintenance 63 Orthotic Specialist 91 | 410 | | <u> </u> | | 20.0 | | | | Aerial Surveillance Photo Equip Repr EL Electronics | Aerial Surveillance Photo Equip Repr EL Electronics Office Machine Repairer GM General Maintenance 63 Orthotic Specialist 69 | 41E | | ⊡ : | | \$ | | | | | Office Machine Kepairer Chronice Office Maintenance 91 | 416 | | | | 63 | | | | Office Machine Repairer UNITED UNIT | UTINOTIC Specialist | 41. | | 3 C | General | 35 | | | 1 MOS Titles, Aptitutde Areas and Career Management Field for 317 MOS in DOT, Proejct A and Synthetic Validity Data Bases (Cont.) | | ting ill coll its | | וו מכלכר זו מוומ כלוונוור בוב מתוומורל מתנת ממכם | - | | |------------|---
--|--|----------|--| | MOS | MOSTITLE | AAID | AATITLE | CMFNO | CMFTITLE | | Ę | Coordination Coordination | × | Conoral Maintenance | 10 | Medical | | 450 | Obtical Laboratory Specialist | 3 | | 16 | Medical | | 775 | Operical rabolatory spec | Ē | _ | 9/ | Supply and Services | | 4 4 A M | Fabric Repair Specialist | . | | 9/ | | | 448 | Metalworker | . | _ | 63 | cal | | 44E | Machinist | E. | General Maintenance | 63 | _ | | 458 | Small Arms Repairer | 3 | | 63 | | | 45D | SP Field Artlry Turret Mech | 픙 | | 63 | | | 45E | M1 ABRAMS Tank Turret Mech | 동 | General Maintenance | 63 | | | 456 | Fire Control System Repairer | ᆸ | Electronics | 63 | | | 45K | Tank Turret Repairer | <u>동</u> | General Maintenance | 25 | _ : | | 45L | Artillery Repairer | . | General Maintenance | <u> </u> | | | 45N | M60A1/A3 Tank Turret Mech | Εē | Mechanical Maintenanc | 33 | | | 45T | BFVS Turret Mechanic | <u>.</u> | General Maintenance | 50 | Mechanical Maintenance | | 46N | PERSHING ElecMechcal Repairer | 7 t | Electronics | 20 | Mechanical maintenance
Dublic Affaire | | 460 | Journalist | 3 3 | | <u></u> | Concar) Controcating | | 518 | Carpentry/Masonry Specialist | 5 3 | | 7.1 | General Engineering | | 210 | Structures Specialist | 5 5 | Conoral Maintenance | 7 17 | | | 215 | Materials quality specialist | 5 3 | | 7 5 | | | Z Z | Flumber
Firstiant | 5 0 | | 7 5 | | | E C | Fire Uniter | 3 | | 77 | Detrolein and Rater | | Z C U | Tatonion Electrician | E | | . [5 | General Fnaineering | | 71C | III.ci 101 Electi itiali
II+ili+ise Fauinment Renairer | 3 | _ | 63 | Mechanical Maintenance | | 320 | Dower Generator Folian Repr | 3 | | 63 | Mechanical Maintenance | | 525
52F | Prime Power Prod Specialist | ST | | 51 | General Engineering | | 52F | Turbine Engine Generator Repr | £ | General Maintenance | 63 | Mechanical Maintenance | | 526 | Transmisson & Distbution Spec | 딥 | | 51 | General Engineering | | 538 | Industrial Gas Prod Specialist | £ | General Maintenance | 55 | Ammunition | | 548 | Chemical Operations Specialist | ST | | 24 | Chemical | | 54C | Smoke Operation Specialist | Æ | | 54 | Chemica] | | 54E | NBC Specialist | ST | | 54 | Chemical | | 55B | Ammunition Specialist | <u>.</u> | | ς,
Σ | Ammunition | | 550 | Explsve Ordnance Disposi Spec | 5 5 | | C 4 | Authoritist Collinary Authoritist Collinary Co | | 555 | Nuclear Weapons Maint Spec | E - | General Maillenailce
Skilled Technical | 2, 2, | Ammunition | | 35X | Allino Stock collerarace, spec | ٠.
چ | | 26 | Supply and Services | | 375 | Craves Begistration Spec | Ę | | 9/ | | | 574 | Cardo Cherialist | 3 | | 88 | Transportation | | , e | Watercraft Operator | £ | Mechanical Maintenance | 88 | Transportation | | 219 | Watercraft Engineer | £ | Mechanical Maintenance | 88 | Transportation | | 61F | Marine Hull Repr | ₹ | General Maintenance | | | | 628 | ipment | ₹ | Mechanical Maintenance | 63 | Mechanical Maintenance | | 62E | Hvy Construction Equip Op | <u>.</u> | | 51 | | | 62F | Crane Operator | £ ; | _ : | 51 | | | 929 | Quarrying Specialist | <u>.</u> | | 7.5 | | | 62H | Concrete & Asphalt Equip Op | 5 | General Maintenance | 7. | General Engineering | | C20 | General construc Equip Up | Light State of the | _ I | - | | MOS Titles, Aptitutde Areas and Career Management Field for 317 MOS in DOT, Proejct A and Synthetic Validity Data Bases (Cont.) | | | - | | | _ | | _ | | _ | _ | | | - | * | • | | | | a) | a | a) | a | Ð | o. | e) | e e | e. | e | بو | ė, | ė, | je | 9; | . | 9 (| ม | | | | | | | | | | | | | |---|--------------|---------------------------|----------------------------|----------------------------|------------------------------|------------------------|-------------------------------|--------------------------------|--------------------------------|----------------------------------|-------------------------|------------------------|------------------------|--------------------------|---------------------|----------------------|---------------------|-----------------------|--|-------------------------------|--------------|------------|----------------------|--------------------------|----------------------------|----------------------|----------------------|-----------------------------|---------------------------|-----------------------------|------------|------------|------------|----------------|----------------------|----------------------|----------------|----------------|---------------|----------------|----------------|----------------|-----|------------------------------|-----|----------|-------------------|-----| | ~ | CMFTITLE | Mechanical Maintenan | | Mechanical Maintenan | Mechanical Maintenan | Mechanical Maintenan | Mechanical Maintenan | | _ | _ | _ | | - | Transportation | Transportation | Transportation | Transportation | Transportation | Aircraft Maintenance | | | | Aircraft Maintenance | _ | _ | _ | _ | | - | | Aircraft Maintenance | Alrcraft Maintenance | Administration | Administration | Modical | Administration | Administration | Transportation | | Public Affairs | | | Signal Operations | | | | CMFN0 | 63 | 63 | 63 | 63 | 63 | 63 | 63 | 63 | 63 | 63 | 9 | 3 & | 8 8 | ; & | 8 | 8 | 8 8 | 29 | 29 | 29 | 29 | 29 | 29 | 29 | 29 | . 67 | 29 | 29 | 29 | 29 | 29 | 67 | / ₉ | ۵: |) F | 7.7 | 7.7 | 76 | 71 | 1,2 | | 3 | 46 | 46 | 31 | 31 | 31 | | 31/ MUS in DUI, Proejct A and Synthetic Validity Data bases | AAID AATITLE | MM Mechanical Maintenance | | _ | Mechanical Operators /F | Mechanica | Mechanical | Mechanical | Mechanical | Mochanical | Mechancial | Mechanical | MM Mechanical Maintenance | MM Mechanical Maintenance | MM Mechanical Maintenance | Mechanical | Mechanical | Mechanical
 _ | _ | | _ | | CL Clerical | | CL Clerical | | | | | Surveill | | _ | | OUM /16 | MOSTITLE | oinethout Machanic | Copied Artilas Sector Mech | M. Abrams Tank System Mach | Fig. 8. Flac System Renairer | Track Vehicle Renairer | Olart&Chem Editoment Renairer | MEDAT 183 Tank System Mechanic | HOUSELL THOOL Vehicle Mechanic | Deady Mired Vellicite recitation | Bradley System mechanic | Wheel Venicle Repairer | Track Vehicle Mechanic | Motor Transport Uperator | Locomotive Kepairer | Kailway car Repairer | Alforake kepa ii ei | Locollot Ive operator | Fd Crewnellebel
 +: +:- Aims -no Donsinon | Observation Aimplane Depairer | | | | Jour Helicopter Repairer | Medium Heliconter Repairer | | | | | | Aircraft | | Aircraft | | | | _ | | | | | | | Fight Operations Coordinator | | | | | | | MOS | 5 | 028 | 200 | 03E | 200 | 25. | 000
NC 9 | NC0 | 250 | 63 | 63W | 637 | 940 | 658 | 050 | 925 | HC0 | 000 | 0/0 | 11/0
11/0 | 0/10 | 27.0 | 671 | 1/0 | 27.0 | 2,4 | 67.4 | 68B | 680 | - 68F | 989 | 68H | 683 | 68M | 98N | 710 | 710 | 71E | 716 | 711 | 7.1M | N : | /IP | 710 | 72F | 726 | 750 | MOS Titles, Aptitutde Areas and Career Management Field for 317 MOS in DOT, Proejct A and Synthetic Validity Data Bases | | | | | | The second secon | |-----|---|----------------|--|----------|--| | MOS | MOSTITLE | AAID | AATITLE | CMFNO | 0 CMFTITLE | | 730 | Finance Specialist
Accounting Specialist | 215 | Clerical
Skilled Technical | 17 | Administration
Administration | | 748 | Card and Tape Writer | ವ | Clerical | 74 | | | 740 | Rec Telecom Cen Opr | 급 : | Electronics | 74 | | | 74U | Computer/Macmine Operator
Programmer Analyst | 2 7 | Skilled Technical
Skilled Technical | 74 | Record Information Operations | | 758 | Personnel Admin Specialist | ಕರ | Clerical | 7.7 | Administration | | 750 | Personnel Management Spec | ರ | Clerical | 71 | Administration | | 750 | | ن | Clerical | 71 | Administration | | 75E | Personnel Action Specialist | ರ | Clerica! | 77 | Administration | | 751 | Personnel Into Mangmt Spec | ن د | Clerical | 7,7 | Administration | | 767 | Equip Records & Parts Spec | ゴこ | Clerica!
Clerical | 95 | Supply and services | | 207 | Maton Control Specialist | ל כ | | 76 | Cupally and Compiner | | 707 | Mat Storage & Handlog Spec | 5 5 | Clerical | 92 | Supply and Services | | 764 | Petroleum Supply Specialist | 12 | Clerical | 77 | Petroleum and Water | | 76X | Subsistence Supply Specialist | ีฮ | Clerical | 9/ | Supply and Services | | 76Y | Unit Supply Specialist | ರ | Clerical | 9/ | Supply and Services | | 818 | Technical Drafting Specialist | ST | Skilled Technical | 51 | General Engineering | | 810 | Cartographer | SI | Skilled Technical | 81 | Topographic Engineering | | 81E | Illustrator | SI | Skilled Technical | 52 | Visual Information | | 810 | Terrain Analyst | SI | Skilled Technical | 28: | Jopographic Engineering | | 828 | Construction Surveyor | 7 5 | <u> </u> | 7. | General Engineering | | 328 | Field Artillery Surveyor | <u> </u> | <u> </u> | <u> </u> | Field Artillery | | 820 | lopographic surveyor | <u> </u> | Skilled (echnica) | 5 5 | Topographic Engineering | | 025 | Photo & Layout Specialist | 25 | Skilled Jechnical | <u> </u> | Topographic Engineering | | 200 | Ctill Dhotographic Checialist | 5 5 | 2 2 | | Topoglaphic and meeting | | 840 | Motion Picture Specialist | 2 72 | | 25 | Visual Information | | 845 | Audio/TV Specialist | S | | 25 | Visual Information | | 188 | Watercraft Engineer | ₹ | Mechanical Maintenance | 88 | Transportation | | 88M | Motor Transport Operator | 9 | Operations Food | 88 | Transportation | | 91A | Medical Specialist | 2 | | 91 | Medical | | 910 | Practical Nurse | 2 5 | | 5 6 | Medical | | 910 | Uperating Koom Specialist | 7 5 | • | <u> </u> | med I ca l | | 916 | Dental Specialist | 5 t | Skilled Technical | 7.5 | Medical | | 910 | Rehavioral Science Specialist | 5 | <u> </u> | 6 | Medical | | 91H | Orthopedic Specialist | S | _ | 91 | Medical | | 913 | Physical Therapy Specialist | SI | Skilled Technical | 91 | Medical | | 911 | Occupational Therapy Spec | SI | Skilled Technical | 91 | Medical | | 91N | Cardiac Specialist | SI | | 91 | Medical | | 916 | X-Ray Specialist | 25 | Skilled Technical | 6 | Medical | | 916 | Pharmacy Specialist | 2.5 | Skilled lechnical | 7.5 | Modical | | 918 | Fuvironmental Health Spec | 5 5 | | 5 | Medical | | 911 | Animal Care Specialist | 2 72 | | 16 | Medical | | 910 | Ear, Nose & Throat Specialist | S | Jed | 91 | Medical | | | | | | | | MOS Titles, Aptitutde Areas and Career Management Field for 317 MOS in DOT, Proejct A and Synthetic Validity Data Bases | MON | MOSTITIE | AAID |) AATITLE | CAFI | CMFNO CMFTITLE | |------|-------------------------------|------|-------------------|----------|---------------------------------------| | | 1111 | | 11 | <u> </u> | | | 910 | Respiratory Specialist | SI | | 6 | medical | | 91 | Fve Specialist | SI | Skilled Technical | ń | Medical | | 92B | Medical Laboratory Specialist | ST | - | 91 | Medical | | 920 | Petroleum Laboratory Spec | ST | Skilled Technical | // | Petroleum and Water | | 020 | Chemical Laboratory Spec | SI | Skilled Technical | 24 | Chemical | | 350 | Air Traffic Control | ST | Skilled Technical | 93 | Aviation Operations | | 936 | Meteorological Observer | ST | | 93 | Aviation Operations | | 035 | Field Artlrv Meteorlogic Spec | Е | Electronics | 13 | Field Artillery | | 93. | Air Traffic Control Tower Op | ST | Skilled Technical | 93 | Aviation Operations | | 03.1 | Air Traff Cntrl Radar Contlr | Sī | Skilled Technical | 93 | Aviation Operations | | 930 | Flight Operations Coordinator | ST | Skilled Technical | 93 | Aviation Operations | | 948 | Food Service Specialist | 뇽 | Operators/Food | 94 | Food Services | | 0.4E | Hospital Food Service Spec | 9F | Operators/Food | 91 | | | 95B | Military Police | ST | Skilled Technical | 95 | | | 950 | Correctional Specialist | ST | | 95 | | | 050 | Checial Agent | SI | Skilled Technical | 95 | _ | | 920 | Intellinence Analyst | SI | Skilled Technical | 96 | | | 966 | Internodator | SI | Skilled Technical | 96 | itary Intell | | 960 | Imagery Analyst | ST | Skilled Technical | 96 | itary Intell | | 96F | Psychological Opertus Spec | ST | Skilled Technical | 96 | Intel | | H96 | Aerial Intell Spec | ST | Skilled Technical | 96 | Inte | | 96R | Ground Surv Systems Operator | SC | | 86 | Inte | | Q7R | Counterintelligence Agents | ST | Skilled Technical | 8 | | | 97F | Interrodator | ST | Skilled Technical | 96 | | | 976 | Signal Security Specialist | ST | Skilled Technical | 96 | Intelligence | | 9 2 | FW/SIGINI Analyst | ST | Skilled Technical | 8 | Warfare | | 88 | Fmitter Locator/Identifier | ST | Skilled Technical | 86 | Intel/Electronic Warfare | | 986 | EW/SIGINT Voice Interceptor | SI | • | 8 8 | Intel/Electronic Warfare | | 981 | EW/SIGINT NoncommoIntercept | S | Skilled Technical |
 | Signais intel/Electronic Warrare Uper | | _ | | | | | | ## Appendix B ## Ward Hierarchical Cluster Analysis of DOT Data - Plot of Cubic Cluster Criterion by Number of Clusters - Plot of Gamma Values by Number of Clusters - Composition of Clusters - Mean Cluster Distances - Mean Cluster Factor Scores WARD HIERARCHICAL CLUSTER ANALYSIS OF DOT DATA PLOT OF CUBIC CLUSTERING CRITERION BY NUMBER OF CLUSTERS Plot of _CCC_*_NCL_. Legend: A = 1 obs, B = 2 obs, etc. Figure 1. CCC Values by Number of Clusters # PLOT OF GAMMA VALUES BY NUMBER OF CLUSTERS Plot of GAMMA*NC. Legend: A = 1 obs, B = 2 obs, etc. Figure 2. Gamma Values by Number of Clusters Table 1. WARD HIERARCHICAL CLUSTER ANALYSIS OF DOT DATA SEVEN CLUSTER SOLUTION | | | CHONOM 1 | | |----------|-----|-------------------------------------|----------| | OBS | MOS | MOSTITLE | DISTANCE | | 1 | 71G | Patient Admin Specialist | 0.39397 | | 2 |
72E | Combat Telecomm Ctr Operator | 0.44179 | | 3 | | Personnel Admin Specialist | 0.58824 | | | 75B | | 0.58824 | | 4 | 75D | Personnel Records Specialist | 0.58824 | | 5 | 75E | Personnel Action Specialist | 0.58824 | | 6 | 75F | Personnel Info Mangmt Spec | 0.61599 | | 7 | 91H | Orthopedic Specialist | 0.67646 | | 8 | 76C | Equip Records & Parts Spec | | | 9 | 91E | Dental Specialist | 0.70011 | | 10 | 76P | Materl Centrl & Acctng Spec | 0.87734 | | 11 | 05D | EW/SIGINT Emitter ID/Locator | 0.88312 | | 12 | 05G | Signal Security Specialist | 0.88312 | | 13 | 05H | EW/SIGINT Intercept-IMC | 0.88312 | | 14 | 05K | EW/SIGINT N-M Interceptor | 0.88312 | | 15 | 72G | Auto Data Telecomm Ctr Oprtor | 0.93878 | | 16 | 74D | Computer/Machine Operator | 0.93878 | | 17 | 05C | Radio Teletype Operator | 0.94256 | | 18 | 91L | Occupational Therapy Spec | 0.95307 | | 19 | 91U | Ear, Nose & Throat Specialist | 0.95975 | | 20 | 71L | Administrative Specialist | 0.97651 | | 21 | 73D | Accounting Specialist | 1.00168 | | 22 | 65E | Airbrake Repairer | 1.12011 | | 23 | 35H | Calibration Specialist | 1.17073 | | 24 | 91T | Animal Care Specialist | 1.23784 | | 25 | 94B | Food Service Specialist | 1.25396 | | 26 | 94F | Hospital Food Service Spec | 1.25396 | | 27 | 74B | Card and Tape Writer | 1.26327 | | 28 | 76Y | Unit Supply Specialist | 1.28821 | | 29 | 91Y | Eye Specialist | 1.33538 | | 30 | 91C | Practical Nurse | 1.36440 | | 31 | 91F | Psychiatric Specialist | 1.36851 | | 32 | 73C | Finance Specialist | 1.41379 | | 33 | 76J | Medical Supply Specialist | 1.41445 | | 34 | 76V | Mat Storage & Handlng Spec | 1.41445 | | 35 | 76X | Subsistence Supply Specialist | 1.41445 | | 36 | 31N | Tactical Circuit Controller | 1.46615 | | 36
37 | 36M | | 1.46615 | | | | Wire Systems Operator | 1.49691 | | 38 | 43E | Parachute Rigger | 1.52121 | | 39 | 65H | Locomotive Operator | 1.55858 | | 40 | 36K | Tactical Wire Operations Specialist | 1.67314 | | 41 | 43M | Fabric Repair Specialist | 1.77308 | | 42 | 91R | Veterinary Food Inspec Spec | 1.77308 | | 43 | 91S | Environmental Health Spec | | | 44 | 53B | Industrial Gas Prod Specialist | 2.07207 | | 45 | 57F | Graves Registration Spec | 2.32522 | | 46 | 57H | Cargo Specialist | 2.48974 | ## WARD HIERARCHICAL CLUSTER ANALYSIS OF DOT DATA SEVEN CLUSTER SOLUTION | | | CLSNUM=2 | | |--|---|---|--| | OBS | MOS | MOSTITLE | DISTANCE | | 47
48
49
51
55
55
55
55
55
56
61
62
63
64
65
66
67
88 | M 198
198
198
198
198
10
10
10
10
10
10
10
10
10
10
10
10
10 | M48-M60 Armor Crewman M1 ABRAMS Armor Crewman Cannon Crewman Concrete & Asphalt Equip Op Smoke Operation Specialist General Construc Equip Op Motor Transport Operator Indirect Fire Infantryman Watercraft Operator Infantryman Train Crewmemeber NIKEHER MissileLauncherRepair ImpHAWK Launch&Mech Sys Repr HAWK Firing Section Reparirer PERSHING ElecMechcal Repairer Combat Engineer Light Air Def Artillery Crewmbr Sgt York Air Def Gun Crwmbr ADA Short Range Gunry Crwmbr Ammunition Specialist Ammo Stock Control&Acct Spec Heavy Anti-Armor Wons Inftryman | 0.41591
0.41591
0.60199
0.63753
0.67362
0.68339
0.80597
0.85503
0.92262
1.09223
1.11903
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.13659
1.1 | | | | CLSNUM=3 | | | | MOS | | DISTANCE | | 75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93 | 93J | Air Traff Cntrl Radar Contlr
Cannon Fire Direction Speclst
MLRS/LANCE Ops/FireDir Spec
Cardiac Specialist | 0.84930 | ## WARD HIERARCHICAL CLUSTER ANALYSIS OF DOT DATA SEVEN CLUSTER SOLUTION ## CLSNUM=3 -----(continued) | OBS | MOS | MOSTITLE | DISTANCE | |----------------------------------|---|--|---| | 94
95
96
97
98
99 | 71E
82B
91A
95C
19D
03C
81E | Court Reporter Construction Surveyor Medical Specialist Correctional Specialist Cavalry Scout Physical Activities Spec Illustrator | 1.55296
1.58926
1.61785
1.72784
2.10109
2.22442
2.39148 | | | | | | _____CLSNUM=4 ------ | OBS |
MOS | MOSTITLE | DISTANCE | |------------|--------------|---|--------------------| | 101 | 21L | PERSHING Electronics Repairer | 0.38655 | | 102 | 22L | NIKE Test Equipment Repairer | 0.38655 | | 103 | 23N | NIKE Track Radar Repairer | 0.38655
0.38655 | | 104 | 23U | NIKE Radar-Simulator Repairer | 0.38655 | | 105 | 24C | Improvd HAWK Firng Sect Mech
Improvd HAWK Fire Contrl Mech | 0.38655 | | 106 | 24E | Improvd HAWK Fire Contil Mech | 0.38655 | | 107 | 24G
24H | Improvd HAWK Fire Contrl Repr | 0.38655 | | 108
109 | 24 H
24 J | Improved HAWK Pulse Radar Rep | 0.38655 | | 110 | 245
24K | ImpHAWK Cont-Wave Radar Repr | 0.38655 | | 111 | 24R
24P | Defense Acq Radar Mechanic | 0.38655 | | 112 | 240 | NIKE-HERCULES Fire Contrl Mec | 0.38655 | | 113 | 24Û | HERCULES Electronic Mechanic | 0.38655 | | 114 | 24W | Sgt York Air Def Gun Syst Mec | 0.38655 | | 115 | 25J | - | 0.38655 | | 116 | 26B | Weapons Support Radar Repr | 0.38655 | | 117 | 26D | Ground Cntrl Approch Rdar Rep | 0.38655 | | 118 | 26E | Aerial Surv Sensor Repairer | 0.38655 | | 119 | 26H | Air Defense Radar Repairer | 0.38655 | | 120 | 26M | Aerial Surveillance Radar Repr | 0.38655 | | 121 | 26Y | SATCOM Equipment Repairer | 0.38655 | | 122 | 27B | LandCombat SystemTestSpecial | 0.38655 | | 123 | 27E | TOW/DRAGON Repairer | 0.38655 | | 124 | 27F | VULCAN Repairer | 0.38655
0.38655 | | 125 | 27G | CHAPARRAL/REDEYE Repairer | 0.38655 | | 126 | 27L | LANCE System Repairer | 0.38655 | | 127 | 27M | MLRS Repairer | 0.38655 | | 128
129 | 27N
27P | Forwrd Area Alerting Rdar Rep
SgtYork Radar/Electron Repr | 0.38655 | | 130 | 27P
27Q | SqtYork Test Specialist | 0.38655 | | 131 | 32F | Fixed Ciphony Repairer | 0.38655 | | 132 | 32G | Fixed Crypto Equip Repairer | 0.38655 | | 133 | 335 | EW/Intercept Sys Repr | 0.38655 | | 134 | 34C | Decen Auto Serv Supp Systm | 0.38655 | | 135 | 34E | NCR 500 Computer Repairer | 0.38655 | | 136 | 34F | Digt Subsc Message Switch Equip | 0.38655 | | 137 | 34H | Auto Digt Message Switch Equip | 0.38655 | | 138 | 34Y | Field Artlry TactFire Repair | 0.38655 | | 139 | 35B | Electronics Instrument Repr | 0.38655 | ## WARD HIERARCHICAL CLUSTER ANALYSIS OF DOT DATA SEVEN CLUSTER SOLUTION ## ----- CLSNUM=4 ----- (continued) | OBS | MOS | MOSTITLE | DISTANCE | |---|---|---|---| | OBS 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 | MOS 35C 35F 45G 41E 81B 42D 34B 41J 26F 41G 35G 26N 31E 31S 31T 32D 35E 41C 91Q | Automatic Test Equip Repairer Nuclear Weapons Electronics Specialist Fire Control System Repairer Audio/Visual Equip Repairer Technical Drafting Specialist Dental Laboratory Specialist Punch Card Machine Operator Office Machine Repairer Aerial Photo-Activ Sensor Rep Aerial Surveillance Photo Equip Repr Biomedical Equipment Spec Aerial Surveillance Infrared Repr Field Radio Repairer Field General Comsec Repairer Field Systems Comsec Repairer Station Technical Controller Special Elec Devices Repairer Fire Contrl Instru Rep Spec Pharmacy Specialist | 0.38655
0.38655
0.38655
0.38655
0.50756
0.51325
0.62258
0.62267
0.62828
0.66863
0.66863
0.668721
0.75073
0.75073
0.75073
0.75073
0.75073
0.80939
0.80939
0.83578 | | 159 | 05B | Radio Operator | 0.88184
0.88184 | | 160
161
162
163
164
165
166 | 26Q
26R
31M
31V
26T
92D
91V
42E | Tact Satell/Microwave Syst Op
Strategic Microwave Syst Op
Multichannel Commo Equip Op
Tactical Commo Syst Op/Mech
Radio/TV Systems Specialist
Chemical Laboratory Spec
Respiratory Specialist
Optical Laboratory Spec | 0.88184
0.88184
0.88184
0.97544
0.97613
1.02500
1.03111 | ----- CLSNUM=5 ----- | OBS | MOS | MOSTITLE | DISTANCE | |-----|-----|-------------------------------|----------| | 168 | 65B | Locomotive Repairer | 0.13966 | | 169 | 44B | Metalworker | 0.23394 | | 170 | 83F | Photolithographer | 0.25333 | | 171 | 61C | Watercraft Engineer | 0.33162 | | 172 | 31J | Teletypewriter Repairer | 0.49581 | | 173 | 36L | Trans ElectSwitchSys Rep | 0.49581 | | 174 | 83E | Photo & Layout Specialist | 0.50341 | | 175 | 41B | Topographic Instr Rep Spec | 0.50464 | | 176 | 26L | Tactical Microwave Syst Repr | 0.53747 | | 177 | 26V | Strategic Microwave Syst Repr | 0.53747 | | 178 | 32H | Fixed Station Radio Repairer | 0.53747 | | 179 | 68F | Aircraft Electrician | 0.54942 | | 180 | 44E | Machinist | 0.57680 | | 181 | 63B | Light Wheel Vehicle Mechanic | 0.61703 | | 182 | 63G | Fuel & Elec System Repairer | 0.61703 | | 183 | 63S | Heavy Wheel Vehicle Mechanic | 0.61703 | | 184 | 63W | Wheel Vehicle Repairer | 0.61703 | | 185 | 35K | Avionic Mechanic | 0.62958 | ## WARD HIERARCHICAL CLUSTER ANALYSIS OF DOT DATA SEVEN CLUSTER SOLUTION | | CLSNUM=5 | | |---|-----------|---| | (| continued |) | | OBS | MOS | MOSTITLE | DISTANCE | |--|--|--|---| | OBS 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 | MOS 35L 35M 35SR 36C 52D 67G 67T 67T 67V 67X 67Y 68B 68H 62B 36H | Avionic Commo Equip Repairer Avionic Nav/FlightContEq Repr Avionic Special Equip Repr Wire System Instll/Operator Power Generator Equip Repr Utility Airplane Repairer Observation Airplane Repairer Utility Helicopter Repairer Tact Transp Helicoptr Repr Medium Helicopter Repairer Observ/Scout Helicoptr Repr Heavy Lift Helicopter Repairer AH-1 Attack Helicoptr Repr Aircraft Powerplant Repairer Aircraft Powertrain Repairer Aircraft Pneudraulic Repairer Construction Equipment Repr Dial/Manual Centrl Office Rep | 0.62958
0.62958
0.62958
0.67395
0.67975
0.68459
0.68459
0.68459
0.68459
0.68459
0.68459
0.68459
0.68459
0.68459
0.68459 | | 204 | 63D | SP Field Artilry System Mech | 0.84468 | | 205 | 63E | M1 Abrams Tank System Mech | 0.84468 | | 206 | 63H | Track Vehicle Repairer | 0.84468 | | 207 | 63N | M60A1/A3 Tank System Mechanic | 0.84468 | | 208 | 63T | Bradley System Mechanic | 0.84468 | | 209 | 63Y | Track Vehicle Mechanic | 0.84468 | | 210 | 68G | Aircraft Structural Repairer | 0.89747 | | OBS | MOS | MOSTITLE | DISTANCE | |--|---|--|--| | OBS 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 | MOS
61F
62D
51R
52G
62F
51ZE
45D
45E
45T
45T
55D | Marine Hull Repr Quarrying Specialist Antenna Installer Specialist Interior Electrician Cable Splicer Transmisson & Distbution Spec Aircraft Weapon Systems Repr Hvy Construction Equip Op Crane Operator Plumber Atomic Demo Munitions Spec Small Arms Repairer SP Field Artlry Turret Mech M1 ABRAMS Tank Turret Mech Tank Turret Repairer Artillery Repairer M60A1/A3 Tank Turret Mech BFVS Turret Mechanic Explsve Ordnance Disposl Spec | 0.50070
0.56695
0.70110
0.79109
0.87028
0.90788
1.06768
1.07876
1.07876
1.08555
1.13762
1.13762
1.13762
1.13762
1.13762
1.13762 | | 230
231 | 55G
51B | Nuclear Weapons Maint Spec
Carpentry/Masonry Specialist | 1.13762 | #### WARD HIERARCHICAL CLUSTER ANALYSIS OF DOT DATA SEVEN CLUSTER SOLUTION | | | CLSNUM=6 | | |---|--
--|---| | | | (continued) | | | OBS | MOS | MOSTITLE | DISTANCE | | 236
237 | 52C
65D
76W
51C
00B
63J
12F
51M | Utilities Equipment Repairer Railway Car Repairer Petroleum Supply Specialist Structures Specialist Diver Quart&Chem Equipment Repairer Engineer Tracked Veh Crewman Firefighter | 1.33526
1.36199 | | | | CLSNUM=7 | | | OBS | MOS | MOSTITLE | DISTANCE | | 247
248
249
250
251
252
253
254
255
256
257
258
259
260
261 | 71R
82C
71P
71Q
71N
96C
98D
98D
93F
15E
71C
97H
74F
91B | Broadcast Journalist Field Artillery Surveyor Flight Operations Coordinator Journalist Traffic Management Coordntor Intelligence Analyst EW/SIGINT Analyst EW/SIGINT NoncommoIntercept Interrogator EW/SIGINT Voice Interceptor Operating Room Specialist Meteorological Observer Field Artlry Meteorlogic Spec Lance Missile Crewmember Pershing Missile Crewmember Topographic Surveyor Legal Clerk Specialist Petroleum Laboratory Spec Counterintelligence Agents ADA Opertns-Intellignce Assis Programmer Analyst Personnel Management Spec Behavioral Science Specialist Medical Laboratory Specialist | 0.80494
0.88675
0.89854
0.89854
0.90186
0.90186
0.91504
0.96454
1.00396
1.03815
1.05751
1.12012
1.21438
1.28063
1.42687
1.43646
1.60056 | # Table 2. WARD HIERARCHICAL CLUSTER ANALYSIS OF DOT DATA MEAN CLUSTER DISTANCES Analysis Variable : DISTANCE Distance to Cluster Seed | | | CLSNUM=1 | | | |----|-----------|-----------|-----------|-----------| | N | Mean | Std Dev | Minimum | Maximum | | 46 | 1.1789369 | 0.4666359 | 0.3939746 | 2.4897408 | | | | CLSNUM=2 | | | | N | Mean | Std Dev | Minimum | Maximum | | | 1.3026237 | | | | | | | CLSNUM=3 | | | | N | Mean | Std Dev | Minimum | Maximum | | | 1.3296487 | | | | | | | | | | | N | Mean | Std Dev | Minimum | Maximum | | | 0.5340135 | | | | | | | CLSNUM=5 | | | | N | Mean | Std Dev | Minimum | Maximum | | 43 | | 0.1639175 | | | | | | CLSNUM=6 | | | | N | Mean | Std Dev | Minimum | Maximum | | 29 | 1.1218373 | 0.2660345 | 0.5007033 | 1.6973233 | | | | | | | #### WARD HIERARCHICAL CLUSTER ANALYSIS OF DOT DATA MEAN CLUSTER DISTANCES | Analysis Variable | : | DISTANCE | Distance | to | Cluster | Seed | |-------------------|---|----------|----------|----|---------|------| |-------------------|---|----------|----------|----|---------|------| | ~ | CLSNUM=7 | | |---|----------|--| | | | | | N | Mean | Std Dev | Minimum | Maximum | |----|-----------|-----------|-----------|-----------| | 24 | 1.0743455 | 0.3851911 | 0.4281011 | 2.0224638 | Table 3. WARD HIERARCHICAL CLUSTER ANALYSIS OF DOT DATA MEAN CLUSTER FACTOR SCORES | OBS | CLSNUM | FREQ | LGEDIST | FACT1 | FACT2 | FACT3 | FACT4 | |----------------------------|---------------------------------|----------------------------------|---|--|---|---|--| | 1
2
3
4
5
6 | 1
2
3
4
5
6
7 | 46
28
26
67
43
29 | 2.48974
2.47599
2.39148
1.03111
0.89747
1.69732
2.02246 | -0.53402
-0.11661
0.15788
0.88834
0.29912
0.28593
-2.37213 | -1.01222
-1.61539
0.24546
0.36909
0.39088
0.62803
1.06938 | -0.71176
0.97982
-0.45250
-0.77713
0.64072
1.81452
-0.45838 | -0.16550
0.17111
1.87808
-0.33684
-1.02574
0.62703
0.10496 | #### Appendix C ### Average Linkage Hierarchical Cluster Analysis of DOT DATA - Plot of Cubic Cluster Criterion by Number of Clusters - Plot of Gamma Values by Number of Clusters - Composition of Clusters - Mean Cluster Distances - Mean Cluster Factor Scores AVERAGE LINKAGE HIERARCHICAL CLUSTER ANALYSIS OF DOT DATA PLOT OF CUBIC CLUSTERING CRITERION BY NUMBER OF CLUSTERS Plot of _CCC_*_NCL_. Legend: A = 1 obs, B = 2 obs, etc. Figure 1. CCC by Number of Clusters # PLOT OF GAMMA VALUES BY NUMBER OF CLUSTERS Plot of GAMMA*NC. Legend: A = 1 obs, B = 2 obs, etc. Figure 2. Gamma by Number of Clusters Table 1. AVERAGE LINKAGE HIERARCHICAL CLUSTER ANALYSIS OF DOT DATA THIRTEEN CLUSTER SOLUTION | | | CLSNUM=1 | | |---|--|--|---| | OBS | MOS | MOSTITLE | DISTANCE | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
33
34
35
36
37
37
37
37
37
37
37
37
37
37
37
37
37 | 055GH
055GH
1655HG
1655HG
77122GDBCDEFCJPVXYCEHLRSTUYEFBF
775776667769911
9913344
991999999999999999999999999 | Radio Teletype Operator EW/SIGINT Emitter ID/Locator Signal Security Specialist EW/SIGINT Intercept-IMC EW/SIGINT N-M Interceptor ADA Opertns-Intellignce Assis Airbrake Repairer Locomotive Operator Patient Admin Specialist Administrative Specialist Combat Telecomm Ctr Operator Auto Data Telecomm Ctr Operator Computer/Machine Operator Personnel Admin Specialist Personnel Management Spec Personnel Records Specialist Personnel Info Mangmt Spec Equip Records & Parts Spec Medical Supply Specialist Materl Centrl & Acctng Spec Mat Storage & Handlng Spec Subsistence Supply Specialist Unit Supply Specialist Practical Nurse Dental Specialist Orthopedic Specialist Orthopedic Specialist Occupational Therapy Spec Veterinary Food Inspec Spec Environmental Health Spec Animal Care Specialist Ear, Nose & Throat Specialist Eye Specialist Meteorological Observer Field Artlry Meteorlogic Spec Food Service Specialist Hospital Food Service Spec |
0.68883
0.62500
0.62500
0.62500
0.62500
1.30342
1.43262
1.07339
0.38648
0.85473
0.82789
0.91211
0.91211
0.91211
0.83621
0.83621
0.83621
0.83621
0.83621
0.83621
0.83621
0.83621
0.83621
0.83621
0.83621
0.83621
0.91211
0.91211
0.91211
0.91211
0.91211
0.91211
0.91211
0.91211
0.9211
0.93621
0.83621
0.83621
0.83621
0.83621
0.83621
0.83621
0.83621
0.83621
0.83621
0.83621
0.83621
0.83621
0.83621
0.83621
0.83621
0.83621
0.83621
0.83621
0.83621
0.83621
0.83621
0.83621
0.87351
1.38435
1.38435
1.38435
1.38435
1.38435
1.38435
1.38435
1.38435
1.38435
1.38435
1.38435
1.38435
1.38435
1.38435
1.38435
1.38435
1.38435
1.38435
1.38435
1.38435
1.38435
1.38435
1.38435
1.38435
1.38435
1.38435
1.38435
1.38435
1.38435
1.38435
1.38435
1.38435
1.38435
1.38435
1.38435
1.38435
1.38435
1.38435
1.38435
1.38435
1.38435
1.38435
1.38435
1.38435
1.38435
1.38435
1.38435
1.38435
1.38436
1.38901
0.90847
0.907973
1.265555
1.15638
1.54980
0.86129
0.86129 | | | | CLSNUM=2 | | | OBS | MOS | MOSTITLE | DISTANCE | | 38
39
40
41
42
43
44
45
46 | 11B
11C
11H
11M
12F
13B
16F
16L
16R | Infantryman Indirect Fire Infantryman Heavy Anti-Armor Wpns Inftryman Fighting Vehicle Infantryman Engineer Tracked Veh Crewman Cannon Crewman Light Air Def Artillery Crewmbr Sgt York Air Def Gun Crwmbr ADA Short Range Gunry Crwmbr M48-M60 Armor Crewman | 1.44070
1.11478
0.82993 | | CLSNUM=2(continued) | | | | | |--|--|---|---|--| | OBS | MOS | MOSTITLE | DISTANCE | | | | 19K
22N
24L
27H
46N
54C
61B
62H
62J
64C
65J | Ml ABRAMS Armor Crewman NIKEHER MissileLauncherRepair ImpHAWK Launch&Mech Sys Repr HAWK Firing Section Reparirer PERSHING ElecMechcal Repairer Smoke Operation Specialist Watercraft Operator Concrete & Asphalt Equip Op General Construc Equip Op Motor Transport Operator Train Crewmemeber | 1.04464
1.04464
0.33643
0.88630
0.91755 | | | | | CLSNUM=3 | | | | OBS | MOS | MOSTITLE | DISTANCE | | | 59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75 | 13E
13F
15J
17L
42C
71E
81C
81F
91JN
91P
93J
95C
96H | Fire Support Specialist MLRS/LANCE Ops/FireDir Spec Aerial Sensor Specialist Orthotic Specialist Exec Administrative Assistant Court Reporter Cartographer Construction Surveyor Psychiatric Specialist Physical Therapy Specialist Cardiac Specialist X-Ray Specialist Air Traffic Control Tower Op Air Traff Cntrl Radar Contlr Military Police | 1.44560
1.34276
1.50225
1.48147
1.19549
0.68008
0.82596 | | | | | CLSNUM=4 | | | | OBS | MOS | MOSTITLE | DISTANCE | | | 78
79
80
81
82
83
84
85
86 | 05B
21L
22L
23N
23U
24C
24E
24G
24H
24J | Radio Operator PERSHING Electronics Repairer NIKE Test Equipment Repairer NIKE Track Radar Repairer NIKE Radar-Simulator Repairer Improvd HAWK Firng Sect Mech Improvd HAWK Fire Contrl Mech Imp HAWK Inform CoorCentMech Improvd HAWK Fire Contrl Repr Improved HAWK Pulse Radar Rep | 0.72867
0.71564
0.71564
0.71564
0.71564
0.71564
0.71564
0.71564
0.71564 | | _____CLSNUM=4 -----(continued) | OBS | MOS | MOSTITLE | DISTANCE | |---|------------|--|--------------------| | 88 | 24K | ImpHAWK Cont-Wave Radar Repr | 0.71564 | | 89 | 24P | Defense Acq Radar Mechanic | 0.71564 | | 90 | 24Q | NIKE-HERCULES Fire Contrl Mec | 0.71564 | | 91 | 24Ũ | HERCULES Electronic Mechanic | 0.71564 | | 92 | 24W | Sgt York Air Def Gun Syst Mec | 0.71564 | | 93 | 25J | _ | 0.71564 | | 94 | 26B | Weapons Support Radar Repr | 0.71564 | | 95 | 26D | Ground Cntrl Approch Rdar Rep | 0.71564 | | 96 | 26E | Aerial Surv Sensor Repairer | 0.71564 | | 97 | 26F | Aerial Photo-Activ Sensor Rep | 0.42556
0.71564 | | 98 | 26H | Air Defense Radar Repairer | 1.29866 | | 99 | 26L | Tactical Microwave Syst Repr | 0.71564 | | 100 | 26M | Aerial Surveillance Radar Repr | 0.41097 | | 101 | 26N | Aerial Surveillance Infrared Repr | 0.72867 | | 102 | 26Q | Tact Satell/Microwave Syst Op | 0.72867 | | 103 | 26R | Strategic Microwave Syst Op | 0.69233 | | 104 | 26T | Radio/TV Systems Specialist
Strategic Microwave Syst Repr | 1.29866 | | 105 | 26V | SATCOM Equipment Repairer | 0.71564 | | 106 | 26Y | LandCombat SystemTestSpecial | 0.71564 | | 107 | 27B | TOW/DRAGON Repairer | 0.71564 | | 108 | 27E
27F | VULCAN Repairer | 0.71564 | | 109 | 27E
27G | CHAPARRAL/REDEYE Repairer | 0.71564 | | $\begin{array}{c} 110 \\ 111 \end{array}$ | 27G
27L | LANCE System Repairer | 0.71564 | | 112 | 27M | MLRS Repairer | 0.71564 | | 113 | 27N | Forwrd Area Alerting Rdar Rep | 0.71564 | | 114 | 27P | SgtYork Radar/Electron Repr | 0.71564 | | 115 | 27Q | SgtYork Test Specialist | 0.71564 | | 116 | 31Ē | Field Radio Repairer | 0.41097 | | 117 | 31M | Multichannel Commo Equip Op | 0.72867 | | 118 | 31S | Field General Comsec Repairer | 0.41097 | | 119 | 31T | Field Systems Comsec Repairer | 0.41097 | | 120 | 31V | Tactical Commo Syst Op/Mech | 0.72867 | | 121 | 32D | Station Technical Controller | 0.41097 | | 122 | 32F | Fixed Ciphony Repairer | 0.71564 | | 123 | | Fixed Crypto Equip Repairer | 0.71564 | | 124 | 32H | Fixed Station Radio Repairer | 1.29866
0.71564 | | 125 | 33S | EW/Intercept Sys Repr | 0.36624 | | 126 | 34B | Punch Card Machine Operator | 0.71564 | | 127 | 34C | Decen Auto Serv Supp Systm | 0.71564 | | 128 | 34E | NCR 500 Computer Repairer | 0.71564 | | 129 | 34F | Digt Subsc Message Switch Equip | 0.71564 | | 130 | 34H | Auto Digt Message Switch Equip
Field Artlry TactFire Repair | 0.71564 | | 131 | 34Y | Floatronias Instrument Penr | 0.71564 | | 132 | 35B
35C | Electronics Instrument Repr
Automatic Test Equip Repairer | 0.71564 | | 133 | 35E | Special Elec Devices Repairer | 0.59969 | | 13 4
135 | 35E | Nuclear Weapons Electronics Specialist | 0.71564 | | 135 | 35G | Biomedical Equipment Spec | 0.55607 | | 137 | 35K | Avionic Mechanic | 0.96493 | | 138 | 35L | Avionic Commo Equip Repairer | 0.96493 | | 139 | 35M | Avionic Nav/FlightContEq Repr | 0.96493 | | 100 | 5544 | | | continued) | OBS | MOS | MOSTITLE | DISTANCE | |--|---|--|---| | 140
141
142
143
144
145
146
147
148
149 | 35R
41C
41E
41G
41J
42D
42E
44B
44E
45G
52D | Avionic Special Equip Repr
Fire Contrl Instru Rep Spec
Audio/Visual Equip Repairer
Aerial Surveillance Photo Equip Repr
Office Machine Repairer
Dental Laboratory Specialist
Optical Laboratory Spec
Metalworker
Machinist
Fire Control System Repairer
Power Generator Equip Repr | 0.96493
0.59969
0.36362
0.42556
0.34791
0.54935
0.71672
1.24081
1.04048
0.71564
1.23937 | | 151 | 61C | Watercraft Engineer | 1.27941 | | 152
153 | 63D
63E | SP Field Artilry System Mech
M1 Abrams Tank System Mech | 1.22580
1.22580 | | 154 | 63H | Track Vehicle Repairer | 1.22580
1.22580 | | 156 | 63N
63T | M60A1/A3 Tank System Mechanic
Bradley System Mechanic
Track Vehicle Mechanic | 1.22580 | | 157
158
159 | 63Y
65B
68F | Locomotive Repairer Aircraft Electrician | 1.30153 | | 160 | 81B | Technical Drafting Specialist | 0.57667 | | 161
162
163
164
165 | 83E
83F
91Q
91V
92D | Photo & Layout Specialist
Photolithographer
Pharmacy Specialist
Respiratory Specialist
Chemical Laboratory Spec | 1.27465
1.23886
0.77180
0.85552
0.77180 | | OBS | MOS | MOSTITLE | DISTANCE | |---|---|---|--| |
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182 | 31J
36C
36D
36E
36H
36L
41B
51C
51K
51C
52C
62B
62E
63B
63G | Teletypewriter Repairer Wire System Instll/Operator Antenna Installer Specialist Cable Splicer Dial/Manual Centrl Office Rep Trans ElectSwitchSys Rep Topographic Instr Rep Spec Carpentry/Masonry Specialist Structures Specialist Plumber Interior Electrician Utilities Equipment Repairer Construction Equipment Repr Hvy Construction Equip Op Crane Operator Light Wheel Vehicle Mechanic Fuel & Elec System Repairer | 0.70663
0.91918
0.94810
1.03666
0.95622
0.70663
0.80308
0.53007
0.69036
0.63851
1.23163
0.83445
0.44280
0.70250
0.70250
0.38038
0.38038
0.38038 | | 183
184
185 | 63J
63S
63W | Quart&Chem Equipment Repairer
Heavy Wheel Vehicle Mechanic
Wheel Vehicle Repairer | 0.38038 | | | | CLSNUM=5
(continued) | | |---|--|---|---| | OBS | MOS | MOSTITLE | DISTANCE | | 186
187
188
189
190
191
192
193
194
195
196
197
198 | 67H
67N
67T
67U
67V
67X | ATICIALL FOWEIGIATE REPAIRES | 0.40190
0.40190
0.40190
0.40190
0.40190
0.40190
0.40190
0.88402
0.40190 | | | | CLSNUM=6 | | | OBS | MOS | MOSTITLE. | DISTANCE | | 200
201
202
203
204
205
206
207
208
209
210
211 | 36M
43E
43M
53B
57F
57H
73C | Tactical Circuit Controller Calibration Specialist Tactical Wire Operations Specialist Wire Systems Operator Parachute Rigger Fabric Repair Specialist Industrial Gas Prod Specialist Graves Registration Spec Cargo Specialist Finance Specialist Accounting Specialist Card and Tape Writer | 1.02945
1.20839
0.94041
1.02945
0.96198
0.70664
0.79970
1.55235
1.62742
0.79399
0.62781
0.84376 | | | | CLSNUM=7 | | | OBS | MOS | MOSTITLE | DISTANCE | | 212
213
214
215
216
217
218
219
220
221
222
223
224 | 12E
45B
45D
45E
45K
45L
45T
51M
52G
55D | Small Arms Repairer SP Field Artlry Turret Mech M1 ABRAMS Tank Turret Mech Tank Turret Repairer Artillery Repairer M60A1/A3 Tank Turret Mech BFVS Turret Mechanic Firefighter Transmisson & Distbution Spec Explsve Ordnance Disposl Spec Nuclear Weapons Maint Spec | 1.84317
0.45310
0.45310
0.45310
0.45310
0.45310
0.45310
0.45310
1.85564
0.81101
0.45310
0.45310
1.02417 | | | | CLSNUM=7 | | |--------------------------|---|--|--| | | | (continued) | | | OBS | MOS | MOSTITLE | DISTANCE | | 226
227 | 62G
68M | Quarrying Specialist
Aircraft Weapon Systems Repr | 0.74560
0.84169 | | | | CLSNUM=8 | | | OBS | MOS | MOSTITLE | DISTANCE | | | 12B
12C
51N
54E
55B
55R
57E | Combat Engineer Bridge Crewman Water Treatment Specialist NBC Specialist Ammunition Specialist Ammo Stock Control&Acct Spec Laundry & Bath Specialist | 1 10058 | | | | CLSNUM=9 | | | OBS | MOS | MOSTITLE | DISTANCE | | 235
236
237
238 | 81E
84B
84C
84F | Illustrator
Still Photographic Specialist
Motion Picture Specialist
Audio/TV Specialist | 0.93167
0.31056
0.31056
0.31056 | | | | CLSNUM=10 | | | OBS | MOS | MOSTITLE | DISTANCE | | 240
241
242
243 | 15D
15E
71D
71N
71P
71Q
71R
74F
82C
82D
91D
92C
96B
96C
97B
98C
98G | Lance Missile Crewmember Pershing Missile Crewmember Legal Clerk Specialist Traffic Management Coordntor Flight Operations Coordinator Journalist Broadcast Journalist Programmer Analyst Field Artillery Surveyor Topographic Surveyor Operating Room Specialist Petroleum Laboratory Spec Intelligence Analyst Interrogator Counterintelligence Agents EW/SIGINT Analyst EW/SIGINT Voice Interceptor EW/SIGINT NoncommoIntercept | 0.97988
1.02455
1.11196
0.91491
0.66499
0.77575
0.44743
1.39501
0.54173
1.09013
0.91205
1.19312
0.87434
0.94608
1.30024
0.87434
0.94608
0.87434 | | | OBS | MOS | MOSTITLE | DISTANCE | | |---|--------------------------|--------------------------|---|--|--| | | 257
258
259
260 | 03C
17M
19D
91A | Physical Activities Spec
Remote Sensor Specialist
Cavalry Scout
Medical Specialist | 1.52619
0.88760
0.94540
0.76536 | | | ക്കു അവരോഗ് വാണ്ട് അ | | | CLSNUM=12 | | | | | OBS | MOS | MOSTITLE | DISTANCE | | | | 261
262 | 91G
92B | Behavioral Science Specialist
Medical Laboratory Specialist | 0.60523
0.60523 | | | ≠ 63 €3 €3 €3 €3 €3 €3 €3 €3 €3 €3 €3 €3 €3 €3 | | | CLSNUM=13 | | | | | OBS | MOS | MOSTITLE | DISTANCE | | | | 263 | 17C | Field Artlry Target Acq Spec | 0 | | # Table 2. AVERAGE LINKAGE HIERARCHICAL CLUSTER ANALYSIS OF DOT DATA MEAN CLUSTER DISTANCES Analysis Variable : DISTANCE Distance to Cluster Seed | × | | CLSNUM=1 | L | | |------------------------|-----------|-----------|-----------|-----------| | N | Mean | Std Dev | Minimum | Maximum | | | | 0.3243709 | | | | | | | | | | N | Mean | Std Dev | Minimum | Maximum | | 21 | 1.0057306 | 0.3048496 | 0.3364318 | 1.4406966 | | | | CLSNUM= | 3 | | | N | Mean | Std Dev | Minimum | Maximum | | 19 | 1.0759780 | 0.3577521 | 0.5020740 | 1.5595874 | | | | | | | | N | Mean | Std Dev | Minimum | Maximum | | | | 0.2522928 | | | | | | CLSNUM= | 5 | | | N | Mean | Std Dev | Minimum | Maximum | | | | 0.2433421 | | | | the disc on the second | | | | | | N | Mean | Std Dev | Minimum | Maximum | | 12 | 1.0101132 | 0.3132278 | 0.6278085 | 1.6274205 | ## AVERAGE LINKAGE HIERARCHICAL CLUSTER ANALYSIS OF DOT DATA MEAN CLUSTER DISTANCES #### Analysis Variable : DISTANCE Distance to Cluster Seed | | | CLSNUM=7 | | | |----|-----------|-----------|-----------|-----------| | N | Mean | Std Dev | Minimum | Maximum | | 16 | 0.7282702 | 0.4746015 | 0.4531041 | 1.8556400 | | | | CLSNUM=8 | | | | N | Mean | Std Dev | Minimum | Maximum | | 7 | 1.0536626 | 0.3038122 | 0.7645306 | 1.6675560 | | | | CLSNUM=9 |) | | | N | Mean | Std Dev | Minimum | Maximum | | 4 | 0.4658368 | 0.3105579 | 0.3105579 | 0.9316736 | | | | CLSNUM=1 | .0 | | | N | Mean | Std Dev | Minimum | Maximum | | 18 | 0.9370519 | 0.2400782 | 0.4474304 | 1.3950147 | | | | CLSNUM= | .1 | | | N | Mean | Std Dev | Minimum | Maximum | | | 1.0311399 | 0.3384609 | 0.7653635 | | | | | CLSNUM= | | | | N | Mean | Std Dev | Minimum | Maximum | | | 0.6052264 | | 0.6052264 | | #### AVERAGE LINKAGE HIERARCHICAL CLUSTER ANALYSIS OF DOT DATA MEAN CLUSTER DISTANCES | Analysis | Variable | : | DISTANCE | Distance | to | Cluster | Seed | |----------|----------|---|----------|----------|----|---------|------| |----------|----------|---|----------|----------|----|---------|------| | | | CLSNUM=1 | 3 | | | |---|------|----------|---------|---------|--| | N | Mean | Std Dev | Minimum | Maximum | | | 1 | 0 | • | 0 | 0 | | Table 3. AVERAGE LINKAGE HIERARCHICAL CLUSTER ANALYSIS OF DOT DATA MEAN CLUSTER FACTOR SCORES | OBS | CLSNUM | FREQ | LGEDIST | FACT1 | FACT2 | FACT3 | FACT4 | |---|---|--|---|--|--|---|---| | 1
2
3
4
5
6
7
8
9
10 | 1
2
3
4
5
6
7
8
9
10 | 37
21
19
88
34
12
16
7
4
18 | 1.54980
1.44070
1.55959
1.30153
1.23163
1.62742
1.85564
1.66756
0.93167
1.39501
1.52619 | -0.73462
0.15738
-0.01389
0.74539
0.24056
-0.24017
0.41263
-0.87829
0.76575
-2.36278
0.07425
-3.94700 | -0.46541
-1.57081
0.01795
0.33458
0.52238
-2.26975
0.84044
-1.47271
1.20575
1.13633
0.06550
2.03100 |
-0.64335
1.01514
-0.55174
-0.53981
1.27509
-0.83617
1.90488
1.13371
-1.01800
-0.48111
0.45950
-0.14600 | -0.20651
0.55295
1.40342
-0.55015
-0.64453
-0.06792
1.30256
-1.12757
2.73625
0.09856
3.07850
0.24700 | | 12
13 | 12
· 13 | 2
1 | 0.60523
0.00000 | -0.12400 | -2.83600 | -0.04300 | 2.06700 | #### Appendix D ### K-Means Cluster Analysis of DOT Data - Plot of Cubic Cluster Criterion by Number of Clusters - Plot of Gamma Values by Number of Clusters - Composition of Clusters - Mean Cluster Distances - Mean Cluster Factor Scores K-MEANS CLUSTER ANALYSIS OF DOT DATA PLOT OF CUBIC CLUSTERING CRITERION BY NUMBER OF CLUSTERS Plot of _CCC_*_NCL_. Legend: A = 1 obs, B = 2 obs, etc. Figure 1. CCC by Number of Clusters Figure 2. Gamma by Number of Clusters | | | | Cluster=1 | | |-----------------------|--|--|---|--| | C | DBS | | MOSTITLE | DISTANCE | | | 26
27 | 13B
19E
19K
11C
54CH
11CB
11CB
11CB
11CB
11CB
11CB
11CB
11 | Smoke Operation Specialist Concrete & Asphalt Equip Op General Construc Equip Op Infantryman Motor Transport Operator Watercraft Operator NIKEHER MissileLauncherRepair ImpHAWK Launch&Mech Sys Repr HAWK Firing Section Reparirer PERSHING ElecMechcal Repairer Engineer Tracked Veh Crewman Train Crewmemeber Light Air Def Artillery Crewmbr Sgt York Air Def Gun Crwmbr ADA Short Range Gunry Crwmbr Combat Engineer Heavy Anti-Armor Wpns Inftryman Fighting Vehicle Infantryman Graves Registration Spec Cargo Specialist Bridge Crewman Laundry & Bath Specialist Field Artlry Target Acq Spec | 0.75090
0.82244
0.85175
0.85847
1.01768
1.24406
1.24406
1.24406
1.30749
1.30784
1.32131
1.32131
1.32131
1.32131
1.56895
1.56895
1.56895
1.75939
2.01581
2.04076
2.14249
2.28251 | | a a a a a a a a a a a | OBS | MOS | MOSTITLE | DISTANCE | | | 28
29
30
31
33
34
35
36
37
38
39
40
41
42
44
45
47 | 75B
75D
75E
75F
72E
91H
71U
71L
74D
05L
76D
05G
05K | Personnel Admin Specialist
Personnel Records Specialist
Personnel Action Specialist | 0.27386
0.27386
0.27386
0.27386
0.48988
0.57232 | | | Cluster=2 | | |---|-------------|--| | (| (continued) | | | OBS | MOS | MOSTITLE | DISTANCE | |--------------------------------------|---|--|--| | OBS 48 49 51 52 54 55 56 61 63 64 65 | MOS 91F 74B 91Y 91C 76P 73C 31N 36M 35H 36K 75C 43E 76Y 43M 91J 95C | Psychiatric Specialist Card and Tape Writer Eye Specialist Animal Care Specialist Practical Nurse Materl Centrl & Acctng Spec Finance Specialist Tactical Circuit Controller Wire Systems Operator Calibration Specialist Tactical Wire Operations Specialist Personnel Management Spec Airbrake Repairer Parachute Rigger Unit Supply Specialist Fabric Repair Specialist Physical Therapy Specialist Correctional Specialist | 1.08129
1.10758
1.12587
1.12657
1.15842
1.18202
1.30623
1.31265
1.31265
1.32295
1.33765
1.38518
1.40611
1.61934
1.62667
1.69049
1.69394
1.94392 | | 66
67 | 53B
71E | Industrial Gas Prod Specialist
Court Reporter | 2.04927
2.08242 | | OBS | MOS | MOSTITLE | DISTANCE | |----------------------|--------------------------|---|--| | 68
69
70
71 | 21L
22L
23N
23U | PERSHING Electronics Repairer
NIKE Test Equipment Repairer
NIKE Track Radar Repairer
NIKE Radar-Simulator Repairer | 0.38213
0.38213
0.38213
0.38213 | | 72 | 24C | Improvd HAWK Firng Sect Mech | 0.38213 | | 73 | 24E | Improvd HAWK Fire Contrl Mech | 0.38213 | | 74 | 24G | Imp HAWK Inform CoorCentMech | 0.38213 | | 75 | 24H | Improvd HAWK Fire Contrl Repr | 0.38213 | | 76 | 24J | Improved HAWK Pulse Radar Rep | 0.38213 | | 77 | 24K | ImpHAWK Cont-Wave Radar Repr | 0.38213 | | 78 | 24P | Defense Acq Radar Mechanic | 0.38213 | | 79 | 24Q | NIKE-HERCULES Fire Contrl Mec | 0.38213 | | 80 | 24U | HERCULES Electronic Mechanic | 0.38213 | | 81 | 24W | Sgt York Air Def Gun Syst Mec | 0.38213
0.38213 | | 82 | 25J | n de la companya | 0.38213 | | 83 | 26B | Weapons Support Radar Repr | 0.38213 | | 84 | 26D | Ground Cntrl Approch Rdar Rep | 0.38213 | | 85 | 26E | Aerial Surv Sensor Repairer | 0.38213 | | 86 | 26H | Air Defense Radar Repairer | 0.38213 | | 87 | 26M | Aerial Surveillance Radar Repr | 0.38213 | | 88 | 26Y | SATCOM Equipment Repairer | 0.38213 | | 89 | 27B | LandCombat SystemTestSpecial | 0.38213 | | 90 | 27E | TOW/DRAGON Repairer | 0.38213 | | 91 | 27F | VULCAN Repairer
CHAPARRAL/REDEYE Repairer | 0.38213 | | 92 | 27G | LANCE System Repairer | 0.38213 | | 93 | 27L | TANCE System repairer | 0.50215 | _____Cluster=3 -----(continued) | | | (00110211000) | | |-----|-----|--|----------| | OBS | MOS | MOSTITLE | DISTANCE | | 94 | 27M | MLRS Repairer | 0.38213 | | | | Forwrd Area Alerting Rdar Rep | 0.38213 | | 95 | 27N | SgtYork Radar/Electron Repr | 0.38213 | | 96 | 27P | Sgtiotk Radal/Election Repl | 0.38213 | | 97 | 27Q | SgtYork Test Specialist | 0.38213 | | 98 | 32F | Fixed Ciphony Repairer | 0.38213 | | 99 | 32G | Fixed Crypto Equip Repairer | 0.38213 | | 100 | 33S | EW/Intercept Sys Repr | 0.38213 | | 101 | 34C | Decen Auto Serv Supp Systm | 0.38213 | | 102 | 34E | NCR 500 Computer Repairer | 0.38213 | | 103 | 34F | Digt Subsc Message Switch Equip | 0.38213 | | 104 | 34H | Auto Digt Message Switch Equip | 0.38213 | | 105 | 34Y | Field Artlry TactFire Repair | 0.38213 | | 106 | 35B | Electronics Instrument Repr | 0.38213 | | 107 | 35C | Automatic Test Equip Repairer | 0.38213 | | 108 | 35F | Nuclear Weapons Electronics Specialist | 0.38213 | | 109 | 45G | Fire Control System Repairer | 0.48847 | | 110 | 81B | Technical Drafting Specialist | 0.53671 | | 111 | 41E | Audio/Visual Equip Repairer | 0.60067 | | 112 | 42D | Dental Laboratory Specialist | 0.64934 | | 113 | 41J | Office Machine Repairer | 0.66112 | | 114 | 34B | Punch Card Machine Operator | 0.67105 | | 115 | 35G | Biomedical Equipment Spec | 0.72574 | | 116 | 26F | Aerial Photo-Activ Sensor Rep | 0.72574 | | 117 | 41G | Aerial Surveillance Photo Equip Repr | 0.78816 | | 118 | 26N | Aerial Surveillance Infrared Repr | 0.78816 | | 119 | 31E | Field Radio Repairer | 0.78816 | | 120 | 31S | Field General Comsec Repairer | 0.78816 | | 121 | 31T | Field Systems Comsec Repairer | 0.78816 | | 122 | 32D | Station Technical Controller | 0.79999 | | 123 | 35E | Special Elec Devices Repairer | 0.79999 | | 124 | 41C | Fire Contrl Instru Rep Spec | 0.81372 | | 125 | 91Q | Pharmacy Specialist | 0.87051 | | 126 | 05B | Radio Operator | 0.87051 | | 127 | 26Q | Tact Satell/Microwave Syst Op | 0.87051 | | 128 | 26R | Strategic Microwave Syst Op | | | 129 | 31M | Multichannel Commo Equip Op | 0.87051 | | 130 | 31V | Tactical Commo Syst Op/Mech | 0.87051 | | 131 | 92D | Chemical Laboratory Spec | 0.97151 | | 132 | 91V | Respiratory Specialist | 1.01279 | | 133 | 26T | Radio/TV Systems Specialist | 1.01825 | | 134 | 81C | Cartographer | 1.05268 | | 135 | 42E | Optical Laboratory Spec | 1.08521 | | 136 | 91P | X-Ray Specialist | 1.33936 | | 137 | 96D | Imagery Analyst | 1.34867 | | 138 | 42C | Orthotic Specialist | 1.48671 | | | | | | ------ Cluster=4 ------ | OBS | MOS | MOSTITLE | DISTANCE | |-----|-----|---------------------|----------| | 139 | 65B | Locomotive Repairer | 0.37404 | Cluster=4 ------(continued) | 140 83F Photolithographer 0.44315 141 61C Watercraft Engineer 0.44315 142 31J Teletypewriter Repairer 0.46117 143 36L Trans ElectSwitchSys Rep 0.47033 145 41B Topographic Instr Rep Spec 0.47371 146 63B Light Wheel Vehicle Mechanic 0.50977 147 63G Fuel & Elec System Repairer 0.50977 148 63S Heavy Wheel Vehicle Mechanic 0.50977 149 63W Wheel Vehicle Repairer 0.50977 150 36C Wire System Instll/Operator 0.53297 150 36C Wire System Instll/Operator 0.533297 151 44B Metalworker 0.533297 151 44B Metalworker 0.533297 151 44B Metalworker 0.533415 152 52D Power Generator Equip Repr 0.64708 153 83E Photo & Layout Specialist 0.65179 154 | OBS | MOS | MOSTITLE |
DISTANCE | |---|--|--|--|--| | 170 32h Tricked States 0.85020 171 44E Machinist 0.86800 172 35K Avionic Mechanic 0.86800 173 35L Avionic Commo Equip Repairer 0.86800 174 35M Avionic Nav/FlightContEq Repr 0.86800 175 35R Avionic Special Equip Repr 0.86800 176 63D SP Field Artilry System Mech 0.98201 177 63E M1 Abrams Tank System Mech 0.98201 | 140
141
142
143
144
145
146
147
148
149
151
153
155
157
159
161
163
164
165
167
168
169 | 83F
61C
31J
36L
62B
41B
63G
63S
63W
36C
83C
67H
67T
67T
67T
67T
67Y
68B
68B
68G
68C
68C
68C
68C
68C
68C
68C
68C
68C
68C | Photolithographer Watercraft Engineer Teletypewriter Repairer Trans ElectSwitchSys Rep Construction Equipment Repr Topographic Instr Rep Spec Light Wheel Vehicle Mechanic Fuel & Elec System Repairer Heavy Wheel Vehicle Mechanic Wheel Vehicle Repairer Wire System Instll/Operator Metalworker Power Generator Equip Repr Photo & Layout Specialist Utility Airplane Repairer Observation Airplane Repairer Utility Helicopter Repairer Tact Transp Helicoptr Repr Medium Helicopter Repairer Observ/Scout Helicoptr Repr Heavy Lift Helicopter Reprirer Aircraft Powerplant Repairer Aircraft Powertrain Repairer Aircraft Powertrain Repairer Aircraft Pneudraulic Repairer Dial/Manual Centrl Office Rep Aircraft Electrician Aircraft Structural Repairer Tactical Microwave Syst Repr Strategic Microwave Syst Repr | 0.41320
0.44315
0.46117
0.46117
0.47033
0.47371
0.50977
0.50977
0.50977
0.53297
0.53415
0.64708
0.65179
0.70452
0.70452
0.70452
0.70452
0.70452
0.70452
0.70452
0.70452
0.70452
0.70452
0.70452
0.70452
0.70452
0.70452
0.70452
0.70452
0.70452
0.70452
0.70452
0.70452
0.70452
0.70452
0.70452
0.70452
0.70452
0.70452
0.70452
0.70452
0.70452
0.70452
0.70452
0.70452
0.70452
0.70452
0.70452
0.70452
0.70452
0.70452
0.70452
0.70452
0.70452
0.70452
0.70452 | | 173 35L Avionic Commo Equip Repairer 0.86800
174 35M Avionic Nav/FlightContEq Repr 0.86800
175 35R Avionic Special Equip Repr 0.86800
176 63D SP Field Artilry System Mech 0.98201
177 63E M1 Abrams Tank System Mech 0.98201 | 168
169
170
171 | 26L
26V
32H
44E | Tactical Microwave Syst Repr
Strategic Microwave Syst Repr
Fixed Station Radio Repairer
Machinist | 0.80416
0.80416
0.85020 | | 178 63H Track Vehicle Repairer 0.98201 | 173
174
175
176
177 | 35L
35M
35R
63D
63E | Avionic Commo Equip Repairer
Avionic Nav/FlightContEq Repr
Avionic Special Equip Repr
SP Field Artilry System Mech | 0.86800
0.86800
0.86800
0.98201 | | | 187
188
189
190
191 | 94B
94F
51K
76W
65H | Food Service Specialist Hospital Food Service Spec Plumber Petroleum Supply Specialist Locomotive Operator | 1.10301
1.10301
1.11281
1.17196
1.21611 | |
Cluster=4 | | |---------------|--| | (continued) | | | OBS | MOS | MOSTITLE | DISTANCE | |--|--|---|---| | 192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207 | 51N
36E
52C
36JJ
55SR
91S
76V
761F
76X
61F
50B | Water Treatment Specialist Cable Splicer Utilities Equipment Repairer Antenna Installer Specialist Quart&Chem Equipment Repairer Ammunition Specialist Ammo Stock Control&Acct Spec Veterinary Food Inspec Spec Environmental Health Spec Interior Electrician Medical Supply Specialist Mat Storage & Handlng Spec Subsistence Supply Specialist Marine Hull Repr NBC Specialist Diver | 1.24944
1.30013
1.37121
1.40211
1.46175
1.65878
1.65878
1.66536
1.66536
1.74966
1.74966
1.74966
1.74966
1.74966
1.74966
2.01378
2.22370 | | 208 | 51M | Firefighter | 2.95684 | | OBS | MOS | MOSTITLE | DISTANCE | |------------|------------|---|--------------------| | 209
210 | 68M
13E | Aircraft Weapon Systems Repr
Cannon Fire Direction Speclst | 0.99098
1.03622 | | 211 | 15J | MLRS/LANCE Ops/FireDir Spec | 1.03622 | | 212 | 95B | Military Police | 1.24848 | | 213 | 12E | Atomic Demo Munitions Spec | 1.39688 | | 214 | 45B | Small Arms Repairer | 1.39688 | | 215 | 45D | SP Field Artlry Turret Mech | 1.39688 | | 216 | 45E | Ml ABRAMS Tank Turret Mech | 1.39688 | | 217 | 45K | Tank Turret Repairer | 1.39688 | | 218 | 45L | Artillery Repairer | 1.39688 | | 219 | 45N | M60A1/A3 Tank Turret Mech | 1.39688 | | 220 | 45T | BFVS Turret Mechanic | 1.39688 | | 221 | 55D | Explsve Ordnance Disposl Spec | 1.39688 | | 222 | 55G | Nuclear Weapons Maint Spec | 1.39688 | | 223 | 82B | Construction Surveyor | 1.41130 | | 224 | 13F | Fire Support Specialist | 1.45644 | | 225 | 52G | Transmisson & Distbution Spec | 1.49405 | | 226 | 17L | Aerial Sensor Specialist | 1.53110 | | 227 | 96H | Aerial Intell Spec | 1.53110 | | 228 | 17M | Remote Sensor Specialist | 1.53143 | | 229 | 93H | Air Traffic Control Tower Op | 1.59766 | | 230 | 93J | Air Traff Cntrl Radar Contlr | 1.59766 | | 231 | 84B | Still Photographic Specialist | 1.62190 | | 232
233 | 84C | Motion Picture Specialist | 1.62190 | | 233 | 84F | Audio/TV Specialist | 1.62190 | | | 91A | Medical Specialist | 1.66088 | | 235
236 | 19D | Cavalry Scout | 1.68463 | | 236 | 91N | Cardiac Specialist | 1.68962 | | 231 | 62G | Quarrying Specialist | 1.83390 | | | | Cluster=5 (continued) | | |--|--|--|---| | OBS | MOS | MOSTITLE | DISTANCE | | 238
239
240 |
03C
71C
81E | Physical Activities Spec
Exec Administrative Assistant
Illustrator | 1.95916
1.96480
2.74549 | | | | Cluster=6 | | | OBS | MOS | MOSTITLE | DISTANCE | | 241
242
243
244
245
246
247
248
249
250
251
252
253
254 | 71R
82C
71P
71Q
91D
96B
98C
98J
15D
71N
96C
98G
93E
93F | Broadcast Journalist Field Artillery Surveyor Flight Operations Coordinator Journalist Operating Room Specialist Intelligence Analyst EW/SIGINT Analyst EW/SIGINT NoncommoIntercept Lance Missile Crewmember Traffic Management Coordntor Interrogator EW/SIGINT Voice Interceptor Meteorological Observer Field Artlry Meteorlogic Spec | 0.74334
0.90323
0.90354
0.90354
0.93467
0.93930
0.95773
1.00534
1.00534 | | 255
256
257
258
259
260
261
262
263 | 82D
15E
71D
92C
97B
74F
16H
91G
92B | Topographic Surveyor Pershing Missile Crewmember Legal Clerk Specialist Petroleum Laboratory Spec Counterintelligence Agents Programmer Analyst ADA Opertns-Intellignce Assis Behavioral Science Specialist Medical Laboratory Specialist | 1.10301
1.15990
1.30007
1.43659
1.49071 | # Table 2. K-MEANS CLUSTER ANALYSIS OF DOT DATA MEAN CLUSTER DISTANCES Analysis Variable : DISTANCE Distance to Cluster Seed | | | Cluste | r=1 | | |----|-----------|-----------|-----------|-----------| | | | | | | | N | Mean | Std Dev | Minimum | Maximum | | 27 | 1.2431065 | 0.5029299 | 0.5632547 | 2.2825120 | | | | | r=2 | | | | | | | | | N | Mean | Std Dev | Minimum | Maximum | | 40 | 1.0860850 | | 0.2738581 | | | | | Cluste | r=3 | | | N | Mean | Std Dev | Minimum | Maximum | | 71 | | | 0.3821345 | | | | | Cluste | r=4 | | | N | Mean | Std Dev | Minimum | Maximum | | 70 | | | 0.3740368 | | | | | Cluste | r=5 | | | N | Mean | Std Dev | Minimum | Maximum | | 32 | 1.5261133 | 0.3161746 | 0.9909758 | 2.7454893 | | | | Cluste | r=6 | | | N | Mean | Std Dev | Minimum | Maximum | | 23 | 1.0547211 | 0.3602128 | 0.4477715 | 1.9576463 | | | | | | | Table 3. K-MEANS CLUSTER ANALYSIS OF DOT DATA MEAN CLUSTER FACTOR SCORES | OBS | FREQ | LGEDIST | NEAREST | FACT1 | FACT2 | FACT3 | FACT4 | |-----|------|---------|---------|----------|----------|----------|----------| | 1 | 27 | 2.28251 | 2 | -0.02978 | -1.81959 | 0.98244 | 0.38204 | | 2 | 40 | 2.08242 | 3 | -0.52085 | -1.03655 | -0.86955 | 0.13608 | | 3 | 71 | 1.48671 | 4 | 0.86872 | 0.36625 | -0.77555 | -0.26866 | | 4 | 70 | 2.95684 | 3 | 0.07260 | 0.28111 | 0.82223 | -0.84264 | | 5 | 32 | 2.74549 | 3 | 0.32709 | 0.60250 | 0.49000 | 1.87741 | | 6 | 23 | 1.95765 | 2 | -2.41622 | 1.11448 | -0.42974 | 0.09830 | #### Appendix E ### Ward Hierarchical Cluster Analysis of Project A Data - Plot of Gamma Values by Number of Clusters - Composition of Clusters ### PLOT OF GAMMA VALUES BY NUMBER OF CLUSTERS Plot of GAMMA*NC. Legend: A = 1 obs, B = 2 obs, etc. Figure 1. Gamma by Number of Clusters | | | CLSNUM=1 | |---|--|---| | OBS | MOS | MOSTITLE | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 12F
13B
13M
15D
15E
16B
16C
16D
16E
16E
16F
16R
16S
16T | MLRS Crewmember Lance Missile Crewmember Pershing Missile Crewmember HERCULES Missile Crewmember HERCULES Fire Control Crewmbr HAWK Missile Crewmember HAWK Fire Control Crewmember Sgt York Air Def Gun Crwmbr ADA Short Range Gunnery Crew ADA Short Range Gunry Crwmbr MANPADS Crewman Patriot Missile Crewmember M48-M60 Armor Crewman | | # # # # # # # # # # # # # # # # # # # | | CLSNUM=2 | | C | BS MOS | MOSTITLE | | | 18 61B
19 62E
20 62F
21 62G
22 62H
23 62J
24 64C | Hvy Construction Equip Op
Crane Operator
Quarrying Specialist
Concrete & Asphalt Equip Op
General Construc Equip Op | | කේ අත දරු සා ස ා සහ අත මේ මේ මේ අත මේ මේ මේ මේ මේ මේ මේ | | CLSNUM=3 | | OE | ss Mos | MOSTITLE | | | 25 67G
26 67H
27 67N
28 67R
29 67S
30 67T
31 67U
32 67V
33 67Y
34 68B
35 68D
36 68G
37 68H | Utility Airplane Repairer Observation Airplane Repairer Utility Helicopter Repairer AH-64 Attack Helicoptr Repr Scout Helicopter Repairer Tact Transp Helicoptr Repr Medium Helicopter Repairer Observ/Scout Helicoptr Repr AH-1 Attack Helicoptr Repr Aircraft Powerplant Repairer Aircraft Powertrain Repairer Aircraft Structural Repairer Aircraft Pneudraulic Repairer | | w | | CLSNUM=4 | |--|-------------------|---| | OBS | MOS | MOSTITLE | | | 63 S | | | 60 | | CLSNUM=5 | | OBS | MOS | MOSTITLE | | 61
62
63
64
65
66
67
68
69
70 | 76P | Parachute Rigger Ammunition Specialist Ammo Stock Control&Acct Spec Cargo Specialist Equip Records & Parts Spec Medical Supply Specialist Materl Centrl & Acctng Spec Mat Storage & Handlng Spec Petroleum Supply Specialist Subsistence Supply Specialist Unit Supply Specialist | | | | CLSNUM=6 | | OBS | MOS | MOSTITLE | | 72
73
74
75
76 | 71D
71G
71L | Exec Administrative Assistant
Legal Clerk Specialist
Patient Admin Specialist
Administrative Specialist
Chapel Activities Specialist | | | | CLSNUM=6 | |---|--|--| | | | (continued) | | OBS | MOS | MOSTITLE | | 77
78
79
80
81
82
83 | 73C
73D
75B
75C
75D
75E
75F | Finance Specialist Accounting Specialist Personnel Admin Specialist Personnel Management Spec Personnel Records Specialist Personnel Action Specialist Personnel Info Mangmt Spec | | | | CLSNUM=7 | | OBS | MOS | MOSTITLE | | 84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110 | 00B
03C
12E
43M
51G
51N
52G
54E
55GE
57F
71N
82D
91C
92D
93F
94F
95D | Diver Physical Activities Spec Atomic Demo Munitions Spec Fabric Repair Specialist Materials Quality Specialist Firefighter Water Treatment Specialist Transmisson & Distbution Spec Smoke Operation Specialist NBC Specialist Explsve Ordnance Disposl Spec Nuclear Weapons Maint Spec Laundry & Bath Specialist Graves Registration Spec Traffic Management Coordntor Terrain Analyst Construction Surveyor Topographic Surveyor Veterinary Food Inspec Spec Petroleum Laboratory Spec Chemical Laboratory Spec Meteorological Observer Field Artlry Meteorlogic Spec Food Service Specialist Hospital Food Service Spec Military Police Correctional Specialist Special Agent | | | | CLSNUM=8 | | OBS | MOS | MOSTITLE | | 112
113
114 | 42C
42D
42E | Orthotic Specialist
Dental Laboratory Specialist
Optical Laboratory Spec | | | | | CLSNUM=8 (continued) | |---|--|--|--| | | | | • | | 0 | BS MC | S | MOSTITLE | | 1
1
1
1
1
1
1
1
1
1
1 | 16 91
17 91
18 91
19 91
20 91
21 91
22 91 | D
E
F
G
H
J
L
N
P
Q
S
T
U
V | Medical Specialist Operating Room Specialist Dental Specialist Psychiatric Specialist Behavioral Science Specialist Orthopedic Specialist Physical Therapy Specialist Occupational Therapy Spec Cardiac Specialist X-Ray Specialist Pharmacy Specialist Environmental Health Spec Animal Care Specialist Ear, Nose & Throat Specialist Respiratory Specialist Eye Specialist Medical Laboratory Specialist | | | | | CLSNUM=9 | | C | BS MC | os | MOSTITLE | | 1
1
1
1
1
1 | 133 11
134 11
135 12
136 12
137 13
138 17 | 2C
3F
7C | Infantryman Indirect Fire Infantryman Fighting Vehicle
Infantryman Combat Engineer Bridge Crewman Fire Support Specialist Field Artlry Target Acq Spec Cavalry Scout Field Artillery Surveyor | | | | | CLSNUM=10 | | C | | os | MOSTITLE | |]
]
] | 142 0:
143 0:
144 1:
145 9:
146 9:
147 9:
148 9:
149 9:
150 9:
151 9: | 5D
5H
6H
6B
6F
6H
7E
7G
8C | EW/SIGINT Emitter ID/Locator EW/SIGINT Intercept-IMC EW/SIGINT N-M Interceptor ADA Opertns-Intellignce Assis Intelligence Analyst Imagery Analyst Psychological Opertns Spec Aerial Intell Spec Counterintelligence Agents Interrogator Signal Security Specialist EW/SIGINT Analyst | | CLSNUM=10 (continued) | | | |--|--|--| | OBS | MOS | MOSTITLE | | 153
154 | 98G
98J | EW/SIGINT Voice Interceptor EW/SIGINT NoncommoIntercept | | | | | | OBS | MOS | MOSTITLE | | 155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176 | 24Q
24U
24W
27E
27F
27G
27L
27M
27P | CHAPARRAL/REDEYE Repairer LANCE System Repairer MLRS Repairer SgtYork Radar/Electron Repr | | CLSNUM=12 | | | | OBS | MOS | MOSTITLE | | 178
179
180
181
182
183
184
185
186
187
188 | 26Q
26R
31C
31K
31M
31V
32D
36C
36M
72E
72G
72H | Tact Satell/Microwave Syst Op Strategic Microwave Syst Op Single Channel Radio Operator Combat Signaler Multichannel Commo Equip Op Tactical Circuit Controller Tactical Commo Syst Op/Mech Station Technical Controller Wire System Instll/Operator Wire Systems Operator Combat Telecomm Ctr Operator Auto Data Telecomm Ctr Oprtor Central Office Operations Op | #### WARDS HIERARCHICAL CLUSTER ANALYSIS OF PROJECT A DATA #### SEVENTEEN CLUSTER SOLUTION |
 | | CLSNUM=12 | | | |---|---|--|--|--| | (continued) | | | | | | OBS | MOS | MOSTITLE | | | | | 93H
93J
93P | Air Traffic Control Tower Op
Air Traff Cntrl Radar Contlr
Flight Operations Coordinator | | | |
 | | CLSNUM=13 | | | | | | | | | | OBS | MOS | MOSTITLE | | | | 199
200
201
202 | 71Q
71R
81B
81C
81E
83E
83F
84B
84C | Journalist Broadcast Journalist Technical Drafting Specialist Cartographer Illustrator Photo & Layout Specialist Photolithographer Still Photographic Specialist Motion Picture Specialist Audio/TV Specialist | | | |
 | | CLSNUM=14 | | | | OBS | MOS | MOSTITLE | | | | 204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
229
220
221
222
223
224
225
226
227
228 | 24K
24P
26C
26E
26F
26K
26K
26T
26Y
27N
31L
31ST
32G
33P
33QR
33T
33T | ImpHAWK Cont-Wave Radar Repr Defense Acq Radar Mechanic Tgt Acq/Surveillance Rdar Rep Ground Cntrl Approch Rdar Rep Aerial Surv Sensor Repairer Aerial Photo-Activ Sensor Rep Air Defense Radar Repairer AerialEWarning/DefEquipRepair Tactical Microwave Syst Repr Radio/TV Systems Specialist Strategic Microwave Syst Repr SATCOM Equipment Repairer Forwrd Area Alerting Rdar Rep Field Radio Repairer Teletypewriter Repairer Field General Comsec Repairer Field Systems Comsec Repairer Fixed Ciphony Repairer Fixed Crypto Equip Repairer Fixed Station Radio Repairer Ele War/Int StrRecv Subt Repr Ele War/Int StratProcess&Stor EW/Intrcpt AvSystems Repairer Ele War/Int Tact Systems Rep Tact Computer Systems Repr | | | #### WARDS HIERARCHICAL CLUSTER ANALYSIS OF PROJECT A DATA #### SEVENTEEN CLUSTER SOLUTION | | | CLSNUM=14 | |------|------------|-------------------------------| |
 | | | | | | (continued) | | | | ALO GOTTOT D | | OBS | MOS | MOSTITLE | | | | | | 229 | 35C | Automatic Test Equip Repairer | | 230 | 35E | Special Elec Devices Repairer | | | 35H | Calibration Specialist | | 231 | | Avionic Commo Equip Repairer | | | 35L | AVIONIC COMMO Equip Repairer | | 233 | 35M | Avionic Nav/FlightContEq Repr | | 234 | 35R | Avionic Special Equip Repr | | 235 | 36L | Trans ElectSwitchSys Rep | | | | | | | | | | | | CLSNUM=15 | |
 | | CD0N011 13 | | | 1400 | WOOMTHI P | | OBS | MOS | MOSTITLE | | | | | | 236 | 44B | Metalworker | | 237 | 44E | Machinist | | 238 | 51B | Carpentry/Masonry Specialist | | 230 | 51B
51C | Structures Specialist | | 233 | 51K | Plumber | | 240 | 210 | Interior Electrician | | 241 | 51R | Interior electrician | | | | | | | | OT CAMPA 1.C | |
 | | CLSNUM=16 | | | | | | OBS | MOS | MOSTITLE | | | | | | 242 | 34L | Field Artlry Digital Sys Rep | | 243 | | Field Artlry TactFire Repair | | 244 | 35G | Biomedical Equipment Spec | | | 35K | Avionic Mechanic | | 245 | 227 | Dial/Manual Centrl Office Rep | | 246 | | | | 247 | | Topographic Instr Rep Spec | | 248 | 41C | Fire Contrl Instru Rep Spec | | 249 | 41E | Audio/Visual Equip Repairer | | 250 | | Office Machine Repairer | | 251 | 45G | Fire Control System Repairer | | 252 | 68F | Aircraft Electrician | | | 68J | Aircraft Fire Control Repr | | 253 | | Aircraft Weapon Systems Repr | | 254 | 68M | Witciair Meabou Systems vebi | | | | | | | | | |
 | | CLSNUM=17 | | | | | | OBS | MOS | MOSTITLE | | _ | | | | 255 | 13C | TACFIRE Operations Specialist | | 256 | 13E | Cannon Fire Direction Speclst | | | | Field Artlry Firefindr Rdr Op | | 257 | 13R | rierd Archiy Filerings No. Op | | 258 | 15J | MLRS/LANCE Ops/FireDir Spec | | 259 | 16J | Def Acq Radar Operator | | 260 | 17B | Field Artlry Radar Crwmbr | | | | | #### WARDS HIERARCHICAL CLUSTER ANALYSIS OF PROJECT A DATA #### SEVENTEEN CLUSTER SOLUTION | Continued) | | | | | |--|--|---|--|--| | OBS | MOS | MOSTITLE | | | | 261
262
263
264
265
266
267
268 | 21G
24T
25L
27B
27Q
74D
74F
96R | PERSHING Elec Materiel Spec PATRIOT Op & System Mechanic ADA Cmnd & Cntrl Syst Op/Repr LandCombat SystemTestSpecial SgtYork Test Specialist Computer/Machine Operator Programmer Analyst Ground Surv Systems Operator | | | #### Appendix F #### Average Linkage Hierarchical Cluster Analysis of Project A Data - Plot of Gamma Values by Number of Clusters - Composition of Clusters PLOT OF GAMMA VALUES BY NUMBER OF CLUSTERS Plot of GAMMA*NC. Legend: A = 1 obs, B = 2 obs, etc. Figure 1. Gamma by Number of Clusters |
 | | CLSNUM=1 | |--|---|--| | OBS | MOS | MOSTITLE | | 1
2
3
4
5
6
7
8
9
0
1
1
1
2
1
3
1
4
1
5
6
7
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 | | Sgt York Air Def Gun Crwmbr
ADA Short Range Gunnery Crew
ADA Short Range Gunry Crwmbr
MANPADS Crewman
Patriot Missile Crewmember
M48-M60 Armor Crewman | |
 | | CLSNUM=2 | | OBS | MOS | MOSTITLE | | 20
21
22
23
24
25
26
27 | 62E
62F
62G
62H
62J | Hvy Construction Equip Op
Crane Operator
Quarrying Specialist
Concrete & Asphalt Equip Op | |
 | | CLSNUM=3 | | OBS | MOS | MOSTITLE | | 28
29
30
31
32
33
34
35
36
37
38
39
40 | 67G
67H
67N
67R
67T
67T
67V
68B
68B
68B
68B | Utility Airplane Repairer Observation Airplane Repairer Utility Helicopter Repairer AH-64 Attack Helicoptr Repr Scout Helicopter Repairer Tact Transp Helicoptr Repr Medium Helicopter Repairer Observ/Scout Helicoptr Repr AH-1 Attack Helicoptr Repr Aircraft Powerplant Repairer Aircraft Powertrain Repairer Aircraft Structural Repairer Aircraft Pneudraulic
Repairer Aircraft Fire Control Repr | | CLSNUM=3 (continued) | | | | | |--|---|--|--|--| | OBS | OBS MOS MOSTITLE | | | | | 42 | | Aircraft Weapon Systems Repr | | | | | | · · · | | | | | | CLSNUM=4 | | | | OBS | MOS | MOSTITLE | | | | 54
55
56
57
58
59
60
61
62
63 | 63G | SP Field Artlry Turret Mech M1 ABRAMS Tank Turret Mech Tank Turret Repairer Artillery Repairer M60A1/A3 Tank Turret Mech BFVS Turret Mechanic Utilities Equipment Repairer Power Generator Equip Repr Turbine Engine Generator Repr Watercraft Engineer Construction Equipment Repr Light Wheel Vehicle Mechanic SP Field Artilry System Mech M1 Abrams Tank System Mech Fuel & Elec System Repairer Track Vehicle Repairer Quart&Chem Equipment Repairer M60A1/A3 Tank System Mechanic Heavy Wheel Vehicle Mechanic Bradley System Mechanic | | | | | | CLSNUM=5 | | | | OBS | MOS | | | | | 66
67
68
69
70
71
72
73
74
75
76 | 43E
55B
557H
716C
76GP
766V
766X
76Y | Parachute Rigger Ammunition Specialist Ammo Stock Control&Acct Spec Cargo Specialist Traffic Management Coordntor Equip Records & Parts Spec Medical Supply Specialist Materl Centrl & Acctng Spec Mat Storage & Handlng Spec Petroleum Supply Specialist Subsistence Supply Specialist Unit Supply Specialist | | | | CLSNUM=6 | | | | | |--|---|--|--|--| | OBS | MOS | MOSTITLE | | | | 78
79
80
81
82
83
84
85
86
87
88
89
90 | 75B
75C | Graves Registration Spec Exec Administrative Assistant Legal Clerk Specialist Patient Admin Specialist Administrative Specialist Chapel Activities Specialist Finance Specialist Accounting Specialist Personnel Admin Specialist Personnel Management Spec Personnel Records Specialist | | | | | | CLSNUM=7 | | | | OBS | MOS | MOSTITLE | | | | 9 2
9 3
9 4 | 91R
94B
94F | Food Service Specialist | | | | | | CLSNUM=8 | | | | OBS | MOS | MOSTITLE | | | | 95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113 | 42D
42E
911E
911F
911NP
911V
911V
911V
912B | Optical Laboratory Spec Medical Specialist Operating Room Specialist Dental Specialist Psychiatric Specialist Behavioral Science Specialist | | | | OBS | MOS | MOSTITLE | | |--|--|---|--| | 115
116
117
118
119
120
121
122
123 | 12B
12C
13F
17C
19D | Fighting Vehicle Infantryman
Combat Engineer
Bridge Crewman
Fire Support Specialist
Field Artlry Target Acq Spec
Cavalry Scout | | | | | CLSNUM=10 | | | OBS | MOS | MOSTITLE | | | 124
125
126
127
128
129
130
131
132
133
134
135 | 16H
96B
96D
96F
96H
97B | EW/SIGINT N-M Interceptor ADA Opertns-Intellignce Assis Intelligence Analyst Imagery Analyst Psychological Opertns Spec Aerial Intell Spec Counterintelligence Agents Interrogator Signal Security Specialist EW/SIGINT Analyst EW/SIGINT Voice Interceptor | | | | | CLSNUM=11 | | | OBS | MOS | MOSTITLE | | | 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 | | | | | | | | CLSNUM=11 | | |-------------|--|---|--|--| | (continued) | | | | | | | OBS | MOS | MOSTITLE | | | | 166 | 24W
27B
27E
27F
27G
27L
27M
27P
27Q
34L
34Y
41C
45G
46N | Field Artlry TactFire Repair | | | | | | CLSNUM=12 | | | | OBS | MOS | MOSTITLE | | | | 170
171
172
173
174
175
176
177
178
179
180
181
182
183 | 13R
16J
17B
25L
26Q
26R
31C
31K
31N
32D
36C
72E
72G
72H
93J
93P
96R | Field Artlry Firefindr Rdr Op Def Acq Radar Operator Field Artlry Radar Crwmbr ADA Cmnd & Cntrl Syst Op/Repr Tact Satell/Microwave Syst Op Strategic Microwave Syst Op Single Channel Radio Operator Combat Signaler Multichannel Commo Equip Op Tactical Circuit Controller Tactical Commo Syst Op/Mech Station Technical Controller Wire System Instll/Operator Wire Systems Operator Combat Telecomm Ctr Operator Auto Data Telecomm Ctr Operator Central Office Operations Op Air Traffic Control Tower Op Air Traff Cntrl Radar Contlr Flight Operations Coordinator Ground Surv Systems Operator | | | | | | CLSNUM=13 | | | | OBS | MOS | MOSTITLE | | | | 191
192
193
194
195 | 71Q
71R
81B
81C
81E | Journalist Broadcast Journalist Technical Drafting Specialist Cartographer Illustrator | | | | TWENT | Y-ONE CLOSTER SOLUTION | | |--|--|---|--| |
 | | CLSNUM=13
(continued) | | | OBS | MOS | MOSTITLE | | | 199 | 83E
83F
84B
84C
84F | Photo & Layout Specialist
Photolithographer
Still Photographic Specialist
Motion Picture Specialist
Audio/TV Specialist | | |
 | | CLSNUM=14 | | | OBS | MOS | MOSTITLE | | | 201
202
203
204
205
207
208
210
211
213
214
215
217
218
219
222
223
223
233
233
233
233
233
233
23 | 24PCDEFHKLTVYNEJS1TFGHPQRTTCEGHKLMRHLBEJF
3131333333333333333333333333333333333 | Defense Acq Radar Mechanic Tgt Acq/Surveillance Rdar Rep Ground Cntrl Approch Rdar Rep Aerial Surv Sensor Repairer Aerial Photo-Activ Sensor Rep Air Defense Radar Repairer AerialEWarning/DefEquipRepair Tactical Microwave Syst Repr Radio/TV Systems Specialist Strategic Microwave Syst Repr SATCOM Equipment Repairer Forwrd Area Alerting Rdar Rep Field Radio Repairer Teletypewriter Repairer Field General Comsec Repairer Field Systems Comsec Repairer Fixed Ciphony Repairer Fixed Crypto Equip Repairer Fixed Station Radio Repairer Fixed War/Int StratProcess&Stor EW/Intrcpt AvSystems Repairer Ele War/Int StratProcess&Stor EW/Intrcpt AvSystems Repairer Ele War/Int Tact Systems Rep Tact Computer Systems Rep Tact Computer Systems Repr Automatic Test Equip Repairer Special Elec Devices Repairer Biomedical Equipment Spec Calibration Specialist Avionic Mechanic Avionic Commo Equip Repairer Avionic Nav/FlightContEq Repr Dial/Manual Centrl Office Rep Trans ElectSwitchSys Rep Topographic Instr Rep Spec Audio/Visual Equip Repairer Office Machine Repairer Aircraft Electrician | | | | | CLSNUM=15 | |--|--|--| | OBS |
s mos | MOSTITLE | | 246 | 44B
44E
51B | Metalworker Machinist Carpentry/Masonry Specialist Structures Specialist Plumber Interior Electrician Transmisson & Distbution Spec | | | | CLSNUM=16 | | | OBS MO | S MOSTITLE | | | 248 95
249 95
250 95 | Military Police
C Correctional Specialist
D Special Agent | | | | CLSNUM=17 | | OBS | s MOS | MOSTITLE | | 251
252
253
254
255
256 | 1 51G
2 51N
3 92C
4 92D
5 93E
6 93F | Materials Quality Specialist Water Treatment Specialist Petroleum Laboratory Spec Chemical Laboratory Spec Meteorological Observer Field Artlry Meteorlogic Spec | | ***** | | CLSNUM=18 | | OBS | s MOS | MOSTITLE | | 258
259 | | | | | _ | CLSNUM=19 | | | OBS M | OS MOSTITLE | | | 262 8 | 1Q Terrain Analyst
2B Construction Surveyor
2D Topographic Surveyor | | INDITIONS COOPERATOR | | | | |----------------------|-------------------|--|----------------------| | | | CLSN | IUM=20 | | OBS | MOS | MOSTITI | Æ | | 264
265
266 | 13C
74D
74F | TACFIRE Operations Specialist
Computer/Machine Operator
Programmer Analyst | | | | | CLSN | IUM=21 | | | OBS | MOS | MOSTITLE | | | 267
268 | 00B
51M | Diver
Firefighter | #### Appendix G #### Ward Hierarchical Cluster Analysis of Synthetic Validity OJI Data - Plot of Cubic Clustering Criterion by Number of Clusters - Plot of Gamma Values by Number of Clusters - Composition of Clusters - Mean Cluster Distances - Mean Cluster Factor Scores PLOT OF CUBIC CLUSTERING CRITERION BY NUMBER OF CLUSTERS Plot of _CCC_*_NCL_. Legend: A = 1 obs, B = 2 obs, etc. Figure 1. CCC by Number of Clusters Figure 2. Gamma by Number of Clusters Table 1. WARD HIERARCHICAL CLUSTER ANALYSIS OF SYNTHETIC VALIDITY OJI DATA EIGHT CLUSTER SOLUTION | | | | CLSNUM=1 | | | |--|---|----------------------|--|---------------------------------|--| | OBS | MOS | MOS | TITLE | DISTANCE | | | 1
2
3
4
5
6
7
8 | 11B
16S
19K
27E
29E
63B
67N
88M | MAN
M1
TOW | Eantryman MPADS Crewman ABRAMS Armor Crewman M/DRAGON Repairer Mio Repairer Mht Wheel Vehicle Mechanic Lity Helicopter Repairer Cor Transport Operator | 3.56884 | | | | | | CLSNUM=2 | | | | OBS | MOS | | MOSTITLE | DISTANCE | | | 9
10
11 | 31C
54B
94B | Sing
Chem
Food | gle Channel Radio Operator
nical Operations Specialis
d Service Specialist | 2.52782
t 2.43594
3.59355 | | | | | | CLSNUM=3 | | | | | OBS 1 | 10S | MOSTITLE | DISTANCE | | | | 12 12B Combat Engineer 2.85401
13 76Y Unit Supply Specialist 2.85401 | | | | | | 2 d o d o d o d o d o d o d | | | CLSNUM=4 | | | | OBS | MOS | | MOSTITLE | DISTANCE | | | 14
15
16 | 31D
51B
71L | Mol
Cai
Adi | oile Subscriber Equipment
rpentry/Masonry Specialist
ministrative Specialist | 3.48259
3.56486
3.43608 | | | on en en ei en en en en en en en en en | | | CLSNUM=5 | | | | | OBS | MOS | MOSTITLE | DISTANCE | | | | 17
18 | 13B
55B | Cannon Crewman
Ammunition Specialist | 3.08094
3.08094 | | | 35 00 44 45 20 00 20 20 20 20 20 20 20 20 20 20 20 | | | CLSNUM=6 | | | | | OBS | MOS | MOSTITLE | DISTANCE | | | | 19 | 96B | Intelligence Analyst | 0 | | | WARD I | HIERARCHICA | | TER ANALYSIS OF SYNTHE
IGHT CLUSTER SOLUTION | TIC VALIDITY | OJI DATA | |--------|-------------|-----|---|--------------|----------| | | | | CLSNUM=7 | | | | | OBS | MOS | MOSTITLE | DISTANCE | | | | 20 | 91A | Medical Specialist | 0 | | | | | | | | | OBS MOS MOSTITLE DISTANCE 21 95B Military Police 0 # Table 2. WARD HIERARCHICAL CLUSTER ANALYSIS OF SYNTHETIC VALIDITY OJI DATA EIGHT CLUSTER SOLUTION MEAN CLUSTER DISTANCES Analysis Variable : DISTANCE Distance to Cluster Seed | | | | _ | | | |----|-------------------|---|--|---------------------------------|--| | | | CLSNUM= | 1 | | | | N | Mean | Std Dev | Minimum | Maximum | | | | | | | | | | | | | | | | | | | CLSNUM- | 2 | | | | N | Mean | Std Dev | Minimum | Maximum | | | 3 | 2.8524381 | 0.6434644 | 2.4359410 | 3.5935507 | | | | | CT CNUM- | 3 | | | | | | _ | | | | | N | Mean | Std Dev | Minimum | Maximum | | | 2 | | 0 | 2.8540053 | 2.8540053 | | | | | CLSNUM= | :4 | | | | | | | | | | | | | | | Maximum | | | 3 | 3.4945098 | 0.0652136 | 3.4360757 | 3.5648597 | | | | | | | | | | | | CLSNUM= | =5 | | | | | | CLSNUM= | | | | | | | Std Dev | | | | | N2 | | Std Dev | | Maximum | | | | Mean | Std Dev | Minimum
3.0809428 | Maximum | | | | Mean
3.0809428 | Std Dev
0
CLSNUM= | Minimum
3.0809428 | Maximum
3.0809428 | | | | Mean
3.0809428 | Std Dev
0 | Minimum
3.0809428 | Maximum
3.0809428 | | | | N 3 N 2 | N Mean 8 3.2313172 N Mean 3 2.8524381 N Mean 2 2.8540053 | N Mean Std Dev 8 3.2313172 0.4042444 CLSNUM= N Mean Std Dev 3 2.8524381 0.6434644 CLSNUM= N Mean Std Dev 2 2.8540053 0 CLSNUM= N Mean Std Dev | 8 3.2313172 0.4042444 2.6587493 | N Mean Std Dev Minimum Maximum 8 3.2313172 0.4042444 2.6587493 3.6893092 CLSNUM=2 N Mean Std Dev Minimum Maximum 3 2.8524381 0.6434644 2.4359410 3.5935507 CLSNUM=3 N Mean Std Dev Minimum Maximum 2 2.8540053 2.8540053 2.8540053 CLSNUM=4 N Mean Std Dev Minimum Maximum 3 3.4945098 0.0652136 3.4360757 3.5648597 | #### WARD HIERARCHICAL CLUSTER ANALYSIS OF SYNTHETIC VALIDITY OJI DATA EIGHT CLUSTER SOLUTION MEAN CLUSTER DISTANCES Analysis Variable : DISTANCE Distance to Cluster Seed | | | CLSNUM= | 7 | | |---|------|---------|---------|---------| | N | Mean | Std Dev | | Maximum | | 1 | 0 | • | 0 | 0 | | | | | 8 | | | N | Mean | Std Dev | Minimum | Maximum | | | 0 | | 0 | | WARD HIERARCHICAL CLUSTER ANALYSIS OF SYNTHETIC VALIDITY OJI DATA EIGHT CLUSTER SOLUTION MEAN CLUSTER FACTOR SCORES | OBS | CLSNUM | FREQ | LGEDIST | PRIN1 | PRIN2 | PRIN3 | PRIN4 | |--------------------------------------|---|---------------------------------|---|--|--|--|---| | 1
2
3
4
5
6
7
8 | 1
2
3
4
5
6
7
8 | 8
3
2
3
2
1
1 | 3.68931
3.59355
2.85401
3.56486
3.08094
0.00000
0.00000 | 0.16195
-0.04545
0.01871
-0.61967
0.33972
-0.04311
-0.27141
0.29742 | -0.37306
-0.43279
-0.08718
-0.20178
-0.10698
0.55400
0.70482
4.01766 | -0.19963
0.34426
-0.43833
0.36720
-0.74740
1.65470
-0.13430
0.31370 | 0.43834
-0.14932
-0.67815
0.19242
-0.28323
-2.56926
-0.50050
1.35647 | | OBS | PRIN5 | | PRIN6 | PRIN7 | PRIN8 | PRIN9 | PRIN10 | | 1
2
3
4
5
6
7
8 | 0.58292
-0.18999
-0.75270
-1.11970
0.47559
-0.47601
0.12441
0.17154 | 0
0
-0
1
-1 | .57820
.32584
.90145
.33599
.98647
.37828
.22752 | 0.04890
-0.54058
0.74362
-0.34902
-0.04663
0.47188
0.72054
-0.30882 | -0.14441
0.32798
-0.45173
-0.41417
-0.37203
-0.39314
4.03065
-0.57616 | -0.37943
-0.65099
-0.49458
1.42858
0.55227
0.13374
0.55734
-0.10378 | -0.11787
0.19024
-0.10870
-0.79440
0.72827
1.76364
-0.50364
0.25632 | | OBS | PRIN11 | P | RIN12 | PRIN13 | PRIN14 | PRIN15 | PRIN16 | | 1
2
3
4
5
6
7
8 | -0.15752
1.44209
-0.10685
-0.22388
-1.07278
0.07216
-0.33510
0.22770 | 1
0
0
0
-0
-0 | .47769
.06595
.36469
.21539
.15683
.82405
.49346 | -0.08594
0.95494
-0.90716
-0.43981
0.38772
0.24126
-0.29432
0.23404 | -0.00239
0.22960
1.03247
-0.07177
-0.90186
-1.25092
0.36233
0.17302 | 0.00331
-0.44511
1.64277
-0.61796
-0.48833
0.74909
0.02985
0.07488 | 0.03206
-0.01565
-1.05295
-0.12835
0.79498
0.62108
0.32632
-0.25594 | #### Appendix H ## Average Linkage Hierarchical Cluster Analysis of Synthetic Validity OJI Data - Plot of Cubic Clustering Criterion by Number of Clusters - Plot of Gamma Values by Number of Clusters - Composition of Clusters - Mean Cluster Distances - Mean Cluster Factor Scores #### AVERAGE LINKAGE HIERARCHICAL CLUSTER ANALYSIS Plot of _CCC_*_NCL_. Legend: A = 1 obs, B = 2 obs, etc. Number of Clusters Figure 1. CCC by Number of Clusters Plot of GAMMA*NC. Legend: A = 1 obs, B = 2 obs, etc. GAMMA | 0.65 + Α Α 0.60 + A Α 0.55 + Α Α Α 0.50 + A Α 0.45 Α Α Α 0.40 Α 0.35 0.30 + Α 0.25 + 0.20 + 2 3 4 5 6
7 8 9 10 11 12 13 14 15 16 17 18 19 20 Figure 2. Gamma by Number of Clusters NC ## AVERAGE LINKAGE CLUSTER ANALYSIS OF SYNTHETIC VALIDITY OJI DATA TEN CLUSTER SOLUTION | | | CLSN | UM=1 | | |---|-------------------|---|-------------------------|---| | OBS | MOS | MOSTITLE | | DISTANCE | | 1
2
3
4
5
6
7
8
9
10
11 | 16S
19K
27E | MANPADS Crewman M1 ABRAMS Armon TOW/DRAGON Repo | n
r Crewman
airer | 2.99355
3.96411
2.91997
3.77634
3.76437
3.78811
ator 3.41772
nt 4.05456
alist 3.25475
nic 2.83969
er 3.09279
3.63563 | | | | CLSN | UM=2 | | | | OBS M | os Mos | ritle . | DISTANCE | | | 13 7 | 6Y Unit Supply | y Specialis | t 0 | | | | CLSN | UM=3 | | | C | BS MO | s MOS' | TITLE | DISTANCE | | | 14 71 | L Administrat | ive Special | ist 0 | | | | CLSN | UM=4 | | | | OBS | MOS MOS' | ritle . | DISTANCE | | | 15 | 55B Ammunition | n Specialis | t 0 | | ~~~~~~ | w | CLSN | JM=5 | | | OBS | MOS | MOS | TITLE | DISTANCE | | 16 | 51B | Carpentry/Mas | onry Specia | list 0 | | යට සහ කෘ ලයා යබ යබ දැව දැස සිකි සම සම සම ස | | CLSN | UM=6 | | | | OBS | MOS MOS | TITLE | DISTANCE | | | 17 | 13B Cannon | Crewman | 0 | ## AVERAGE LINKAGE CLUSTER ANALYSIS OF SYNTHETIC VALIDITY OJI DATA TEN CLUSTER SOLUTION | es es co pa es | | | CLSNUM=7 | | |---|-----|-------|------------------------|----------| | | OBS | MOS | MOSTITLE | DISTANCE | | | 18 | 96B | Intelligence Analyst | 0 | | .3 m | | | CLSNUM=8 | | | | OBS | MOS | MOSTITLE | DISTANCE | | | 19 | 94B | Food Service Specialis | t 0 | | | | | CLSNUM=9 | | | | OBS | MOS | MOSTITLE | DISTANCE | | | 20 | 91A | Medical Specialist | 0 | | | | | CLSNUM=10 | | | | OB | s mos | MOSTITLE | DISTANCE | | • | 2 | 1 95E | Military Police | 0 | # Table 2. AVERAGE LINKAGE CLUSTER ANALYSIS OF SYNTHETIC VALIDITY OJI DATA TEN CLUSTER SOLUTION MEAN CLUSTER DISTANCES Analysis Variable : DISTANCE Distance to Cluster Seed | N Mean Std Dev Minimum Maximum 12 3.4584665 0.4276312 2.8396881 4.0545550 CLSNUM=2 N Mean Std Dev Minimum Maximum 1 0 . 0 0 N Mean Std Dev Minimum Maximum 1 0 . 0 0 N Mean Std Dev Minimum Maximum 1 0 . 0 0 0 . 0 0 0 CLSNUM=5 CLSNUM=6 | | | CLSNUM= | 1 | | |--|---|------|---------|---------|---------| | 12 3.4584665 0.4276312 2.8396881 4.0545550 | N | Mean | Std Dev | Minimum | Maximum | | N Mean Std Dev Minimum Maximum 1 0 . 0 0 | | | | | | | N Mean Std Dev Minimum Maximum 1 0 0 0 0 0 | | | CLSNUM= | 2 | | | N Mean Std Dev Minimum Maximum | | | | | | | N Mean Std Dev Minimum Maximum 1 0 0 0 0 | N | Mean | Std Dev | Minimum | Maximum | | N Mean Std Dev Minimum Maximum 1 0 . 0 0 | 1 | 0 | | 0 | 0 | | 1 0 . 0 0 N Mean Std Dev Minimum Maximum 1 0 . 0 0 . 0 0 0 . . 0 Maximum 1 0 . 0 0 . 0 0 0 . . 0 0 . . . 0 0 | · • • • • • • • • • • • • • • • • • • • | | CLSNUM= | 3 | | | N Mean Std Dev Minimum Maximum 1 0 . 0 0 CLSNUM=5 N Mean Std Dev Minimum Maximum 1 0 . 0 0 CLSNUM=6 | N | Mean | Std Dev | Minimum | Maximum | | N Mean Std Dev Minimum Maximum 1 0 . 0 0 . | 1 | 0 | | 0 | 0 | | 1 0 . 0 0 | • OD OU | | CLSNUM= | 4 | | | N Mean Std Dev Minimum Maximum 1 0 . 0 0 | N | Mean | Std Dev | Minimum | Maximum | | N Mean Std Dev Minimum Maximum 1 0 . 0 0 | 1 | 0 | | 0 | 0 | | 1 0 . 0 0 . 0 | | | CLSNUM= | 5 | | | | N | Mean | Std Dev | Minimum | Maximum | | | 1 | 0 | | 0 | 0 | | | | | CLSNUM= | 6 | · | | N Mean Std Dev Minimum Maximum | N | Mean | Std Dev | Minimum | Maximum | | 1 0 . 0 | 1 | 0 | | 0 | 0 | #### AVERAGE LINKAGE CLUSTER ANALYSIS OF SYNTHETIC VALIDITY OJI DATA TEN CLUSTER SOLUTION MEAN CLUSTER DISTANCES Analysis Variable : DISTANCE Distance to Cluster Seed | | | CLSNUM= | 7 | | |-----|------|----------|---------|---------| | N | Mean | | Minimum | Maximum | | 1 | 0 | | 0 | 0 | | | | CLSNUM= | 3 | | | N | Mean | Std Dev | Minimum | Maximum | | 1 | 0 | | 0 | 0 | | w w | | CLSNUM=9 | 9 | | | N | Mean | Std Dev | Minimum | Maximum | | 1 | 0 | | 0 | 0 | | | | CLSNUM= | 10 | | | N | Mean | Std Dev | Minimum | Maximum | | 1 | 0 | | 0 | 0 | Table 3. AVERAGE LINKAGE CLUSTER ANALYSIS OF SYNTHETIC VALIDITY OJI DATA TEN CLUSTER SOLUTION MEAN CLUSTER PRINCIPAL COMPONENT SCORES | OBS | CLSNUM | FREQ | LGEDIST | PRIN1 | PRIN2 | PRIN3 | PRIN4 | |---|--|---------------------------------------|---|--|--|---|--| | 1
2
3
4
5
6
7
8
9 | 1
2
3
4
5
6
7
8
9 | 12
1
1
1
1
1
1
1 | 4.05456
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000 | 0.33819
-1.72717
-2.02128
-0.67466
0.48131
1.35409
-0.04311
-1.45349
-0.27141
0.29742 | -0.38951
-0.09264
0.41597
0.03274
-0.40400
-0.24669
0.55400
-0.30776
0.70482
4.01766 | 0.16881
-0.56586
-0.09448
-0.79051
-0.87607
-0.70428
1.65470
-0.82867
-0.13430
0.31370 | 0.25323
-0.66921
-1.38610
-0.22871
1.15929
-0.33774
-2.56926
0.13695
-0.50050
1.35647 | | OBS | PRIN5 | | PRIN6 | PRIN7 | PRIN8 | PRIN9 | PRIN10 | | 1
2
3
4
5
6
7
8
9 | 0.19948
0.24122
-0.02133
-0.56347
-3.04245
1.51465
-0.47601
-0.34233
0.12441
0.17154 | -0
-0
1
-0
2
-1
0 | .27206
.96394
.59641
.97140
.76095
.00153
.37828
.80503
.22752 | -0.15120
0.74618
0.58385
-0.29016
0.62027
0.19689
0.47188
-0.92621
0.72054
-0.30882 | -0.05502
-0.63031
-0.94271
-0.52110
-0.24751
-0.22295
-0.39314
0.16350
4.03065
-0.57616 | -0.36989
0.23631
0.88692
-0.89249
2.00416
1.99702
0.13374
-0.38058
0.55734
-0.10378 | -0.15856
1.00246
-2.30650
0.89679
0.28422
0.55974
1.76364
-0.05036
-0.50364
0.25632 | | OBS | PRIN11 | P | RIN12 | PRIN13 | PRIN14 | PRIN15 | PRIN16 | | 1
2
3
4
5
6
7
8
9 | -0.06162
-0.17610
-0.34338
-2.04973
0.00911
-0.09582
0.07216
3.43055
-0.33510
0.22770 | 0
-0
-0
0
-0
-0 | .04820
.14298
.88374
.12379
.50982
.43744
.82405
.34337
.49346 | -0.14813
-0.47824
-0.23389
0.41826
0.95462
0.35718
0.24126
0.57864
-0.29432
0.23404 | 0.09984
2.27991
-0.52184
0.26454
0.24195
-2.06825
-1.25092
-0.67882
0.36233
0.17302 | 0.01116
1.57933
-1.62093
-1.00536
-0.52744
0.02871
0.74909
0.55796
0.02985
0.07488 | -0.08222
-1.75315
-0.32850
2.37607
-0.18999
-0.78612
0.62108
0.97680
0.32632
-0.25594 | #### Appendix I #### K-Means Cluster Analysis of Synthetic Validity OJI Data - Plot of Cubic Clustering Criterion by Number of Clusters - Plot of Gamma Values by Number of Clusters - Composition of Clusters - Mean Cluster Distances - Mean Cluster Factor Scores ### SAS MODIFIED K-MEANS ITERATIVE CLUSTER ANALYSIS CCC DIFFERENCES Plot of _CCC_*_NCL_. Legend: A = 1 obs, B = 2 obs, etc. Gigure 1. CCC by Number of Clusters $\frac{NCL}{r}$ #### SAS MODIFIED K-MEANS ITERATIVE CLUSTER ANALYSIS Plot of GAMMA*NC. Legend: A = 1 obs, B = 2 obs, etc. GAMMA 0.4 Α 0.3 Α Α Α Α 0.2 + Α Α Α 0.1 + Α Α Α Α 0.0 + Α --0.1 ÷ -0.2 + -0.3 + -0.4 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Figure 2. Gamma by Number of Clusters ## Table 1 SAS K-MEANS CLUSTER ANALYSIS OF SYNTHETIC VALIDITY OJI DATA TEN CLUSTER SOLUTION | | | Cluster=1 | | |--|------------|--|--------------------| | OBS | MOS | MOSTITLE | DISTANCE | | 1 | 94B | Food Service Specialist | 0 | | | | | | | | |
Cluster=2 | | | OBS | | MOSTITLE | | | 2 | 63B | Light Wheel Vehicle Mechanic | 0 | | es es as | | Cluster=3 | | | OBS | MOS | MOSTITLE | DISTANCE | | 3 | 88M | Motor Transport Operator | 0 | | | | 23 | | | ○ □ ② ★ ★ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ | | Cluster=4 | | | OBS | MOS | MOSTITLE | DISTANCE | | 4
5 | 11B
16S | Infantryman
MANPADS Crewman | 2.94358
3.08304 | | 6 | 19K | M1 ABRAMS Armor Crewman | 3.73339 | | 7 | 202 | Dadia Danaiwaw | 2 06220 | | 8
9 | 31D | Combat Engineer Mobile Subscriber Equipment Administrative Specialist Unit Supply Specialist Ammunition Specialist Carpentry/Masonry Specialist Cannon Crewman | 4.07801 | | 10 | 71L | Administrative Specialist | 4.13386 | | 11 | 76Y | Unit Supply Specialist | 4.14541 | | 12
13 | 51B | Carpentry/Masonry Specialist | 4.21129 | | | | | 4.22277 | | 15 | 95B | Military Police | 4.26833 | | *************************************** | | Cluster=5 | | | | s mos | | | | | | 3 Intelligence Analyst | | | 1 | . , , , , | | • | | · | | Cluster=6 | | | O | BS MO | OS MOSTITLE | DISTANCE | | | 17 21 | TE TOW/DRAGON Repairer | 0 | ## SAS K-MEANS CLUSTER ANALYSIS OF SYNTHETIC VALIDITY OJI DATA TEN CLUSTER SOLUTION | | | Cluster=7 | | |--|-----|---------------------|---------------| | | OBS | MOS MOSTITLE | DISTANCE | | | 18 | 91A Medical Specia | alist 0 | | 6 8 8 W W W W W W W W W W W W W W W W W | | Cluster=8 | | | OBS | MOS | MOSTITLE | DISTANCE | | 19 | 31C | Single Channel Radi | lo Operator 0 | | € co ca co | | Cluster=9 | | | OBS | MOS | MOSTITLE | DISTANCE | | 20 | 67N | Utility Helicopter | Repairer 0 | | | | Cluster=10 | | | OBS | MOS | MOSTITLE | DISTANCE | # SAS K-MEANS CLUSTER ANALYSIS OF SYNTHETIC VALIDITY OJI DATA TEN CLUSTER SOLUTION MEAN CLUSTER DISTANCES Analysis Variable : DISTANCE Distance to Cluster Seed | | | Cluster | ·=1 | | |-------|-----------|-----------|-----------|-----------| | N | Mean | Std Dev | Minimum | Maximum | | 1 | 0 | | 0 | 0 | | | | Cluster | ·=2 | | | | | Std Dev | Minimum | Mavimum | | | | 2tg nev | | | | 1
 | 0 | | | · | | | | Cluster | ~=3 | | | N | Mean | Std Dev | Minimum | Maximum | | 1 | 0 | | 0 | 0 | | | | Clusto | | | | | | Cluster | | | | N | Mean | Std Dev | Minimum | Maximum | | 12 | 3.8985686 | 0.4454806 | 2.9435756 | 4.2683254 | | | | Cluste | r=5 | | | N | Mean | Std Dev | Minimum | Maximum | | 1 | 0 | | 0 | 0 | | | | Cluste | r=6 | | | | | | | | | N
 | | Std Dev | | | | 1 | 0 | • | 0 | 0 | ## SAS K-MEANS CLUSTER ANALYSIS OF SYNTHETIC VALIDITY OJI DATA TEN CLUSTER SOLUTION MEAN CLUSTER DISTANCES Analysis Variable : DISTANCE Distance to Cluster Seed | | | Cluster | =7 | ****** | |---|------|---------|---------|---------| | N | Mean | Std Dev | Minimum | Maximum | | 1 | 0 | | 0 | 0 | | | | Cluster | =8 | | | N | Mean | Std Dev | Minimum | Maximum | | 1 | | | 0 | 0 | | | | Cluster | =9 | | | N | Mean | Std Dev | Minimum | Maximum | | 1 | 0 | | 0 | | | | | | 10 | | | N | | Std Dev | Minimum | Maximum | | 1 | 0 | | 0 | 0 | Table 3. SAS K-MEANS CLUSTER ANALYSIS OF SYNTHETIC VALIDITY OJI DATA TEN CLUSTER SOLUTION MEAN CLUSTER PRINCIPAL COMPONENT SCORES | OBS | FREQ I | LGEDIST NE | AREST | PRIN1 | PRIN2 | PRIN3 | PRIN4 | |---|--|--|---|--|---|---|---| | 1
2
3
4
5
6
7
8
9 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 0.00000
0.00000
0.00000
4.26833
0.00000
0.00000
0.00000
0.00000 | 9 | 1.45349
0.35237
0.68529
0.14672
0.04311
0.06958
0.27141
0.58823
0.34172
0.72890 | -0.30776
-0.39903
-0.32751
0.16703
0.55400
-0.68118
0.70482
-0.61715
-0.55708
-0.37345 | -0.82867
-0.74343
-1.31049
-0.15851
1.65470
1.10102
-0.13430
1.70462
0.30183
0.15684 | 0.13695
1.18719
0.29866
-0.03067
-2.56926
1.14129
-0.50050
-0.00107
1.25862
-0.58383 | | OBS | PRIN5 | PRIN6 | PRIN7 | PRIN8 | PRIN9 | PRIN10 | PRIN11 | | 1
2
3
4
5
6
7
8
9
10 | -0.3423
0.4625
0.0608
-0.0643
-0.4760
0.8455
0.1244
0.0299
0.3253
-0.2576 | 6 -1.61588
6 -0.75626
9 0.21604
1 -1.37828
4 0.46725
1 0.22752
8 0.41274
4 -0.51443
2 -0.24024 | -0.92621
0.63775
-1.87959
-0.11046
0.47188
2.02812
0.72054
-0.50260
0.96856
-0.19294 | 0.4551
-0.4130
-0.3931
-0.3831
4.0306
0.4914
-0.0497
0.3290 | 0 -0.81999
1 -0.89226
3 0.31122
4 0.13374
1 -0.40622
5 0.55734
3 -0.17604
2 -0.35425 | -0.05036
-0.00851
0.64058
-0.32525
1.76364
0.29944
-0.50364
-0.24771
1.14074
0.86878 | 3.43055
-0.62641
-1.03227
-0.27050
0.07216
0.61493
-0.33510
0.23894
0.22637
0.65679 | | 1
2
3
4
5
6
7
8
9 | -0.3433
1.1032
-0.5196
-0.1142
-0.8240
-1.6896
-0.4934
1.6280
0.5960
1.9131 | 2 -0.2656
1 0.1360
0 -0.0503
5 0.2412
2 -0.2994
6 -0.2943
5 1.9041
5 -1.7780 | 8 -1.0
8 -1.1
9 0.2
6 -1.2
5 0.1
2 0.3
4 1.1
1 -0.2 | 9865
0479
0798
5092
8506
6233
8632
7759 | 0.14036
0.74909
1.45998
0.02985
0.43266
0.09764 | 0.97680
0.00590
-1.74510
0.03794
0.62108
-0.88927
0.32632
-0.03417
1.27268
-0.98958 | | #### Appendix J #### Ward Hierarchical Cluster Analysis of Synthetic Validity CTI Data - Plot of Cubic Clustering Criterion by Number of Clusters - Plot of Gamma Values by Number of Clusters - Composition of Clusters - Mean Cluster Distances - Mean Cluster Factor Scores #### WARDS HIERARCHICAL CLUSTER ANALYSIS Plot of _CCC_*_NCL_. Legend: A = 1 obs, B = 2 obs, etc. 0.0 + -0.5 ÷ C -1.0 + u b i c c -1.5 -1.5 + C | u | s | t -2.0 + e | r | i | n | g -2.5 + o | n -3.5 + Α -4.0 ÷ Α -4.5 + 3 1 Figure 1. CCC by Number of Clusters Number of Clusters Figure 2. Gamma by Number of Clusters Table 2 WARD HIERARCHICAL CLUSTER ANALYSIS OF SYNTHETIC VALIDITY CTI DATA THIRTEEN CLUSTER SOLUTION | | | CLSNUM=1 | | |-------------|----------------------------------|--|--------------------------------------| | ОВ | s Mos | MOSTITLE | DISTANCE | | | 1 11B
2 16S
3 19K
4 88M | Infantryman
MANPADS Crewman
M1 ABRAMS Armor Crewman
Motor Transport Operato | | | | | CLSNUM=2 | | | OBS | MOS | MOSTITLE | DISTANCE | | 5
6
7 | 55B
63B
67N | Ammunition Specialist
Light Wheel Vehicle Mechan
Utility Helicopter Repairs | 3.10573
nic 2.15722
er 2.24662 | | w | | CLSNUM=3 | | | OBS | MOS | MOSTITLE | DISTANCE | | 8
9 | 31C
31D | Single Channel Radio Opera
Mobile Subscriber Equipmen | 1.83879
nt 1.83879 | | | | CLSNUM=4 | | | OBS | MOS | MOSTITLE | DISTANCE | | 10
11 | 12B
54B | Combat Engineer
Chemical Operations Specia | 2.26873
list 2.26873 | | | | CLSNUM=5 | | | 0: | BS MOS | MOSTITLE | DISTANCE | | | 12 27E
13 76Y | TOW/DRAGON Repairer
Unit Supply Specialist | 2.48972
2.48972 | | | | CLSNUM=6 | | | OB | s mos | MOSTITLE | DISTANCE | | 1 | 4 71L | Administrative Specialis | st 0 | | | | CLSNUM=7 | | | .1 | OBS MC | OS MOSTITLE | DISTANCE | | | 15 96 | B Intelligence Analyst | 0 | ## WARD HIERARCHICAL CLUSTER ANALYSIS OF SYNTHETIC VALIDITY CTI DATA THIRTEEN CLUSTER SOLUTION | | | | CLSNUM=8 | | | |-----|-------|------|--------------------|-----------|---| | | OBS | MOS | MOSTITLE | DISTANCE | | | | 16 | 29E | Radio Repairer | 0 | | | | | | GI GNIN-0 | | | | | | | CLSNUM=9 | | | | | OBS | MOS | MOSTITLE | DISTANCE | | | | 17 | 13B | Cannon Crewman | 0 | | | | | | OT CMIN(-10 | | | | | | | CLSNUM=IU | | | | OBS | MOS | | MOSTITLE | DISTANC | E | | 18 | 51B | Carp | entry/Masonry Spec | cialist 0 | | | | | | OT CAMPA-11 | | | | | | | CLSNUM=II | | | | 0 | BS MO | S | MOSTITLE | DISTANCE | | | | 19 94 | B F | ood Service Specia | alist 0 | | | | | | ar cyrnu-10 | | | | | | | CLSNUM=12 | | | | | OBS | MOS | MOSTITLE | DISTANCE | | | | 20 | 95B | Military Police | e 0 | | | | | | ar avent 12 | · | | | | | | CLSNUM=13 | | | | | OBS | MOS | MOSTITLE | DISTANCE | | | | 21 | 91A | Medical Specialis | st 0 | | # Table 2. WARD HIERARCHICAL CLUSTER ANALYSIS OF SYNTHETIC VALIDITY CTI DATA THIRTEEN CLUSTER SOLUTION CLUSTER MEAN DISTANCES | CLSNUM=1 | | |--|-----| | | | | N Mean Std Dev Minimum Maxin | mum | | 4 2.6247570 0.5823268 1.9914173 3.2335 | 681 | | CLSNUM=2 | | | C20.10.1 2 | | | N Mean Std Dev Minimum Maxim | mum | | 3 2.5031917 0.5237257 2.1572239 3.1057 | 316 | | CLSNUM=3 | | | | | | N Mean Std Dev Minimum Maxin | | | 2 1.8387945 0 1.8387945 1.8387 | 945 | | CLSNUM=4 | | | N Mean Std Dev Minimum Maxii | mum | | 2 2.2687343 0 2.2687343 2.2687 | 343 | | | | | N Mean Std Dev Minimum Maxin | mum | | 2 2.4897170 0 2.4897170 2.4897 | 170 | | CLSNUM=6 | | | N Mean Std Dev Minimum Maxii | mum | | 1 0 . 0 | 0 | # WARD HIERARCHICAL CLUSTER ANALYSIS OF SYNTHETIC VALIDITY CTI DATA THIRTEEN CLUSTER SOLUTION CLUSTER MEAN DISTANCES | N Mean Std Dev Minimum Maximum 1 0 . 0 0 | ~ = 4 + = 0 = 0 = 0 = 0 = 0 | | CLSNUM= | 7
 | | |--|-----------------------------|------|---------|---------|---------|-----| | N Mean Std Dev Minimum Maximum 1 0 0 0 0 0 | N | Mean | Std Dev | Minimum | Maximum | | | N Mean Std Dev Minimum Maximum 1 0 . 0 0 N Mean Std Dev Minimum Maximum 1 0 . 0 0 N Mean Std Dev Minimum Maximum 1 0 . 0 0 N Mean Std Dev Minimum Maximum 1 0 . 0 0 CLSNUM=12 . . . 0 0 | 1 | 0 | | 0 | 0 | | | N Mean Std Dev Minimum Maximum | | | CLSNUM= | 8 | | | | N Mean Std Dev Minimum Maximum | N | Mean | Std Dev | Minimum | Maximum | | | N Mean Std Dev Minimum Maximum 1 0 . 0 0 . . . 0 . . . 0 . 0 . . . 0 0 0 . . . 0 0 0 0 . | | | | | 0 | | | 1 0 . 0 0 . . . 0 0 . . 0 0 . . 0 0 . . . 0 0 . . . 0 . | | | CLSNUM= | 9 | | | | 1 0 . 0 0 . . . 0 0 . . 0 0 . . 0 0 . . . 0 0 . . . 0 . | N | Mean | Std Dev | Minimum | Maximum | | | N Mean Std Dev Minimum Maximum 1 0 . 0 0 . . 0 0 . | | | | | | | | N Mean Std Dev Minimum Maximum 1 0 . 0 0 . CLSNUM=11 . . Maximum 1 0 . 0 0 . 0 0 0 . CLSNUM=12 . . | | | CLSNIM= | | | | | 1 0 . 0 0 | | | CHONOIT | | | | | | N | Mean | Std Dev | Minimum | Maximum | | | N Mean Std Dev Minimum Maximum 1 0 . 0 0 | 1 | 0 | | 0 | 0 | | | 1 0 . 0 0 . 0 | | | CLSNUM= | 11 | | ~~~ | | | N | Mean | Std Dev | Minimum | Maximum | | | | 1 | 0 | | 0 | 0 | | | | | | CLSNUM= | 12 | | | | N Mean Std Dev Minimum Maximum | N | Mean | Std Dev | Minimum | Maximum | | | 1 0 . 0 | 1 | 0 | • | 0 | 0 | | ## WARD HIERARCHICAL CLUSTER ANALYSIS OF SYNTHETIC VALIDITY CTI DATA THIRTEEN CLUSTER SOLUTION CLUSTER MEAN DISTANCES | | | CLSNUM=13 | } | | | |---|------|-----------|---------|---------|--| | N | Mean | Std Dev | Minimum | Maximum | | | 1 | 0 | | 0 | 0 | | WARD HIERARCHICAL CLUSTER ANALYSIS OF SYNTHETIC VALIDITY CTI DATA THIRTEEN CLUSTER SOLUTION CLUSTER MEAN PRINCIPAL COMPONENT SCORES | OBS | CLSNUM | FREQ | LGEDIST | PRIN1 | PRIN2 | PRIN3 | PRIN4 | |---|--|--|--|--|--|--|--| | 1
2
3
4
5
6
7
8
9
10
11
12
13 | 1
2
3
4
5
6
7
8
9
10
11
12 | 4
3
2
2
2
1
1
1
1
1
1
1 | 3.23357
3.10573
1.83879
2.26873
2.48972
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000 | 0.94178 -0.42651 -0.03446 0.93563 -0.75605 -2.09002 -0.47021 -1.02942 1.39505 -0.28777 -1.11918 1.19009 -0.36638 | -0.41443
-0.33301
-0.54932
-0.44990
-0.13351
0.85199
1.16373
-0.45036
-0.53810
-0.63798
-0.00989
3.53967
1.00311 | -0.54779 -0.14893 1.83055 -0.27634 0.27045 -0.87992 0.50459 1.25971 -0.53739 -0.71623 -0.99476 1.00244 -0.64980 | -0.20067
0.80895
-0.53762
-0.49252
0.26938
-0.97709
-2.99176
0.52866
-0.03464
1.30144
0.50595
1.70296
-0.13818 | | OBS | PRIN5 | | PRIN6 | PRIN7 | PRIN8 | PRIN9 | PRIN10 | | 1
2
3
4
5
6
7
8
9
10
11
12
13 | 0.52459
0.18022
-0.35689
-1.17451
0.81277
0.29388
-0.77352
0.50260
1.47176
-3.02318
0.13162
-0.02328
0.21834 | 0
-1
-0
0
0
1
0
-0
0
-1 | .40278
.23969
.42252
.25019
.07552
.41377
.59005
.26242
.51123
.95869
.29561
.32821
.88210 | -0.78229
0.36581
-0.35292
0.25518
1.56654
0.26363
0.30626
-0.29731
1.27685
0.34065
-0.59487
0.06542
-2.26651 | -0.75384
-0.31503
-0.34876
0.24890
0.66658
-0.25843
-0.20819
-0.16290
1.05951
0.57528
-0.72441
-0.69082
3.23695 | -0.03248
0.90909
-0.72000
1.03419
0.83485
-1.74513
0.46813
-0.82782
-1.94432
-1.24062
0.09462
-0.22590
0.52561 | -0.21080
0.04676
0.40141
-0.75503
-0.04589
-1.02408
0.96027
-2.27228
1.34024
1.11705
1.31918
0.21575
-0.15420 | | OBS | PRIN11 | P | RIN12 | PRIN13 | PRIN14 | PRIN15 | | | 1
2
3
4
5
6
7
8
9
10
11
12
13 | -0.31811 1.06671 0.59410 0.00267 -0.65630 -0.13779 0.04356 -0.02027 0.53475 0.02439 -2.79041 0.02430 0.51287 | -0
0
0
0
0
0
-1
-0
-1
0
0 | .03758
.70488
.86897
.63155
.63200
.57816
.38691
.65697
.08848
.32011
.07302
.42866
.26770 | -0.84938
0.34592
-0.26772
1.51155
-1.27951
0.41227
0.12200
0.71673
0.98724
-1.01980
1.46694
0.28414
-0.53841 | -0.04048
-0.51229
-0.39212
-0.27803
0.16917
-2.06271
0.83647
2.33296
-0.18954
0.71867
0.90678
0.04179
0.11638 | 0.03439
1.12200
0.46121
-0.94591
-0.89516
-0.27828
0.16399
-0.11836
-1.13085
-0.05276
0.73551
-0.35312
0.29005 | | #### Appendix K # Average Linkage Hierarchical Cluster Analysis of Synthetic Validity CTI Data - Plot of Cubic Clustering Criterion by Number of Clusters - Plot of Gamma Values by Number of Clusters - Composition of Clusters - Mean Cluster Distances - Mean Cluster Factor Scores #### AVERAGE LINKAGE HIERARCHICAL CLUSTER ANALYSIS Plot of _CCC_*_NCL_. Legend: A = 1 obs, B = 2 obs, etc. Figure 1. CCC by Number of Clusters Number of Clusters #### AVERAGE LINKAGE HIERARCHICAL CLUSTER ANALYSIS Plot of GAMMA*NC. Legend: A = 1 obs, B = 2 obs, etc. Figure 2. Gamma by Number of Clusters Table 1. AVERAGE LINKAGE CLUSTER ANALYSIS OF SYNTHETIC VALIDITY CTI DATA NINE CLUSTER SOLUTION | | | | CLSNUM=1 | | |---|--|---|--|-------------------------------------| | OBS | MOS | MOSTI | TLE | DISTANCE | | 1
2
3
4
5
6
7
8
9
10
11 | 12B
16S
19K
27E
31C
31D | MANPA
M1 AB
TOW/D
Singl
Mobil | tryman t Engineer DS Crewman RAMS Armor Crewman RAGON Repairer e Channel Radio Opera e Subscriber Equipmen cal Operations Specia Wheel Vehicle Mechan ty Helicopter Repaire Supply Specialist Transport Operator | 3.71489
tor 3.17915
t 3.55096 | | | | | CLSNUM=2 | | | | OBS | MOS | MOSTITLE | DISTANCE | | | 13
14 | 29E
55B | Radio Repairer
Ammunition Specialist | 2.71079
2.71079 | | ® ආ ආ ආ © © ∰ © № № 00 © ○ ○ | | | CLSNUM=3 | | | OI | ss MC | S | MOSTITLE | DISTANCE | | : | 5 71 | .L Ad | ministrative Speciali | st 0 | | ~~~~~~~ | | | CLSNUM=4 | | | | OBS | MOS | MOSTITLE | DISTANCE | | | 16 | 13B | Cannon Crewman | 0 | | w w = = = = = = = = = = = = = = = = = = | | | CLSNUM=5 | | | OBS | MOS | | MOSTITLE | DISTANCE | | 17 | 51B | Carp | entry/Masonry Special | ist 0 | | | | | CLSNUM=6 | | | | OBS | MOS | MOSTITLE | DISTANCE | | | 18 | 96B | Intelligence Analyst | 0 | # AVERAGE LINKAGE CLUSTER ANALYSIS OF SYNTHETIC VALIDITY CTI DATA NINE CLUSTER SOLUTION OBS MOS MOSTITLE DISTANCE 19 94B Food Service Specialist 0 OBS MOS MOSTITLE DISTANCE 20 95B Military Police 0 OBS MOS MOSTITLE DISTANCE 20 95B MILITARY POLICE DISTANCE OBS MOS MOSTITLE DISTANCE 21 91A Medical Specialist 0 # AVERAGE LINKAGE CLUSTER ANALYSIS OF SYNTHETIC VALIDITY CTI DATA NINE CLUSTER SOLUTION MEAN CLUSTER DISTANCES | | | CT CVITY | .1 | | |----|-----------|-----------|-----------|-----------| | | | CLSNUM= | :1 | | | N | Mean | Std Dev | Minimum | Maximum | |
12 | 3.3404878 | 0.3941285 | 2.6724787 | 3.7798698 | | | | CLSNUM= | =2 | | | | | 025011 | - | | | N | Mean | Std Dev | Minimum | Maximum | | 2 | 2.7107930 | 0 | 2.7107930 | 2.7107930 | | | | CLSNUM= | =3 | | | N | Mean | Std Dev | Minimum | Maximum | | 1 | 0 | | 0 | 0 | | | | CLSNUM= | =4 | | | | | CHSNOM- | • | | | N | Mean | Std Dev | Minimum | Maximum | | 1 | 0 | | 0 | 0 | | | | CLSNUM= | =5 | | | N | Mean | Std Dev | Minimum | Maximum | | 1 | 0 | • | 0 | 0 | | | | CLSNUM= | =6 | | | N | Mean | Std Dev | Minimum | Maximum | | 1 | 0 | • | 0 | 0 | | | | | | | #### AVERAGE LINKAGE CLUSTER ANALYSIS OF SYNTHETIC VALIDITY CTI DATA NINE CLUSTER SOLUTION MEAN CLUSTER DISTANCES |
 | | CLSNUM=7 | | | |------|------|----------|---------|---------| | N | Mean | Std Dev | Minimum | Maximum | | 1 | 0 | , | 0 | 0 | |
 | | CLSNUM=8 | } | | | N | Mean | | Minimum | | | 1 | 0 | | 0 | 0 | |
 | | CLSNUM=9 |) | | | N | Mean | Std Dev | Minimum | Maximum | | 1 | 0 | | 0 | 0 | AVERAGE LINKAGE CLUSTER ANALYSIS OF SYNTHETIC VALIDITY CTI DATA NINE CLUSTER SOLUTION MEAN CLUSTER PRINCIPAL COMPONENT SCORES | OBS | CLSNUM | FREQ | LGEDIST | PRIN1 | PRIN2 | PRIN3 | PRIN4 | |---|--|---------------------------------------|--|---|---|--|--| | 1
2
3
4
5
6
7
8 | 1
2
3
4
5
6
7
8
9 | 12
2
1
1
1
1
1
1 | 3.77987
2.71079
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000 | 0.24502
-0.59590
-2.09002
1.39505
-0.28777
-0.47021
-1.11918
1.19009
-0.36638 | -0.42860
-0.11468
0.85199
-0.53810
-0.63798
1.16373
-0.00989
3.53967
1.00311 | 0.16796
0.12777
-0.87992
-0.53739
-0.71623
0.50459
-0.99476
1.00244
-0.64980 | -0.02369
0.45779
-0.97709
-0.03464
1.30144
-2.99176
0.50595
1.70296
-0.13818 | | OBS | PRIN5 | | PRIN6 | PRIN7 | PRIN8 | PRIN9 | PRIN10 | | 1
2
3
4
5
6
7
8
9 | 0.10911
0.19751
0.29388
1.47176
-3.02318
-0.77352
0.13162
-0.02328
0.21834 | -0
0
-0
0
1
-1 | .06021
.66214
.41377
.51123
.95869
.59005
.29561
.32821
.88210 | -0.04139
0.55264
0.26363
1.27685
0.34065
0.30626
-0.59487
0.06542
-2.26651 | -0.17559
-0.44142
-0.25843
1.05951
0.57528
-0.20819
-0.72441
-0.69082
3.23695 | 0.35118
-0.07329
-1.74513
-1.94432
-1.24062
0.46813
0.09462
-0.22590
0.52561 | -0.09609
-1.31061
-1.02408
1.34024
1.11705
0.96027
1.31918
0.21575
-0.15420 | | OBS | PRIN11 | P | RIN12 | PRIN13 | PRIN14 | PRIN15 | | | 1
2
3
4
5
6
7
8
9 | 0.01043
0.83162
-0.13779
0.53475
0.02439
0.04356
-2.79041
0.02430
0.51287 | -1
0
-1
0
-1 | .32463
.27619
.57816
.08848
.32011
.38691
.07302
.42866 | -0.19307
0.30121
0.41227
0.98724
-1.01980
0.12200
1.46694
0.28414
-0.53841 | -0.28174
1.50653
-2.06271
-0.18954
0.71867
0.83647
0.90678
0.04179
0.11638 | -0.05228
0.62639
-0.27828
-1.13085
-0.05276
0.16399
0.73551
-0.35312
0.29005 | | #### Appendix L #### K-Means Cluster Analysis of Synthetic Validity CTI Data - Plot of Cubic Clustering Criterion by Number of Clusters - Plot of Gamma Values by Number of Clusters - Composition of Clusters - Mean Cluster Distances - Mean Cluster Factor Scores #### SAS MODIFIED K-MEANS ITERATIVE CLUSTER ANALYSIS CCC DIFFERENCES Plot of _CCC_*_NCL_. Legend: A = 1 obs, B = 2 obs, etc. Figure 1. CCC by Number of Clusters #### SAS MODIFIED K-MEANS ITERATIVE CLUSTER ANALYSIS Plot of GAMMA*NC. Legend: A = 1 obs, B = 2 obs, etc. GAMMA 0.5 Α 0.4 + Α 0.3 + Α Α 0.2 + Α Α Α Α 0.1 Α Α Α 0.0 A Α -0.1 + -0.2 ÷ 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 2 3 Figure 2. Gamma by Number of Clusters NC # Table 1. SAS K-MEANS CLUSTER ANALYSIS OF SYNTHETIC VALIDITY CTI DATA SEVENTEEN CLUSTER SOLUTION | | | ~~~~ | Cluster=1 | | |--|------|------------|-----------------------------|-------------------------| | | OBS | MOS | MOSTITLE | DISTANCE | | | 1 2 | 11B
16S | Infantryman
MANPADS Crew | 1.50805
vman 1.50805 | | | | | Cluster=2 | | | | OBS | MOS | MOSTITLE | DISTANCE | | | 3 | 12B | Combat Engir | neer 0 | | | | | Cluster=3 | | | | OBS | MOS | MOSTITLE | DISTANCE | | | 4 | 13B | Cannon Crewn | man 0 | | | | | Clustoned | | | | MOS | | | DISTANCE | | | | | | ecialist 0 | | - | 742 | • | ood betvice bpe | | | | | | Cluster=5 | | | OBS | MOS | | MOSTITLE | DISTANCE | | ϵ | 19K | . M | 11 ABRAMS Armor | Crewman 0 | | | | | Cluster=6 | | | C | BS M | os | MOSTITLE | DISTANCE | | | 7 2 | 7E | TOW/DRAGON Rep | pairer 0 | | | | | Cluster=7 | | | a m to | OBS | MOS | | DISTANCE | | | 8 | | Radio Repair | | | · | O | 4 J E | Kadio Kepali | LGL V | | | | | Cluster=8 | | | | OBS | MOS | MOSTITLE | DISTANCE | | | 9 | 95B | Military Po | lice 0 | ### SAS K-MEANS CLUSTER ANALYSIS OF SYNTHETIC VALIDITY CTI DATA SEVENTEEN CLUSTER SOLUTION |
 | | Cluster=9 | | |-----------|-------------|--|-------------------------| | OBS | MOS | MOSTITLE | DISTANCE | | 10 | 31D | Mobile Subscriber Equipment | t 0 | | | | Cluster=10 | | |
OBS | MOS | MOSTITLE | DISTANCE | | 11 | | Carpentry/Masonry Specialist | | | 11 | 710 | Carpenery/Masonry Opeoraris | · | |
 | | Cluster=11 | | | | MOS | MOSTITLE | DISTANCE | | 12
13 | 31C
54B | Single Channel Radio Operator
Chemical Operations Specialis | r 1.64476
st 1.64476 | | | | | | | | | Cluster=12 | | | OB | S MO | S MOSTITLE | DISTANCE | | 1 | 4 55 | B Ammunition Specialist | 0 | |
 | | Cluster=13 | | | OBS | MOS | MOSTITLE | DISTANCE | | 15
16 | 88M
63B | | 2.39230 | | 17 | 96B | Intelligence Analyst | 3.47328 | |
 | | Cluster=14 | | | OBS | MOS | MOSTITLE | DISTANCE | | 18 | 67N | Utility Helicopter Repaire: | r 0 | | | | | | |
ap ao | | Cluster=15 | | | OBS | MOS | MOSTITLE | DISTANCE | | 19 | 71L | Administrative Specialist | 0 | |
 | | Cluster=16 | | | OBS | MOS | MOSTITLE | DISTANCE | | 20 | 76 Y | Unit Supply Specialist | 0 | ## SAS K-MEANS CLUSTER ANALYSIS OF SYNTHETIC VALIDITY CTI DATA SEVENTEEN CLUSTER SOLUTION | | | Cluster=17 | | | |-----|-------------|--------------------|----------|--| | OBS | MOS | MOSTITLE | DISTANCE | | | 21 | 91 A | Medical Specialist | 0 | | # Table 2. SAS K-MEANS CLUSTER ANALYSIS OF SYNTHETIC VALIDITY CTI DATA SEVENTEEN CLUSTER SOLUTION MEAN CLUSTER DISTANCES | | | Cluste | C=1 | | |---|-----------|---------|-----------|-----------| | N | Mean | Std Dev | Minimum | Maximum | | 2 | 1.5080474 | 0 | 1.5080474 | 1.5080474 | | | | Cluste | r=2 | | | N | Mean | Std Dev | Minimum | Maximum | | 1 | 0 | | 0 | 0 | | | | Cluste: | r=3 | | | N | Mean | Std Dev | Minimum | Maximum | | 1 | 0 | | 0 | 0 | | | | | | | | | | Cluste: | r=4 | | | N | Mean | Std Dev | Minimum | Maximum | | 1 | 0 | | 0 | 0 | | | | Cluste | r=5 | | | N | Mean | Std Dev | Minimum | Maximum | | 1 | 0 | | 0 | 0 | | | | Cluste | r=6 | | | N | Mean | Std Dev | Minimum | Maximum | | 1 | 0 | | 0 | 0 | #### SAS K-MEANS CLUSTER ANALYSIS OF SYNTHETIC VALIDITY CTI DATA SEVENTEEN CLUSTER SOLUTION MEAN CLUSTER DISTANCES | | | Clust | er=7 | | |---|-----------|---------|--------------|-----------| | | | 0.2.2.5 | | | | N | Mean | Std Dev | Minimum | Maximum | | 1 | 0 | | 0 | 0 | | | | Clust | 00 | | | | | Clust | er-o | | | N | Mean | Std Dev | Minimum | Maximum | | 1 | 0 | | 0 | 0 | | | | Clust | 0 | | | | | Clust | er-y | | | N | Mean | Std Dev | Minimum | Maximum | | 1 | 0 | | 0 | 0 | | | | Cluste | | | | | | Cluste | :r=10 | | | N | Mean | Std Dev | Minimum | Maximum | | 1 | 0 | | 0 | 0 | | | | Clusto | er=11 | | | | | Cluste | :1-11 | | | N | Mean | Std Dev | Minimum | Maximum | | 2 | 1.6447628 | 0 | 1.6447628 | 1.6447628 | | | | Cluste | r=12 | | | , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | Ciuste | 51-12 | | | N | Mean | Std Dev | Minimum | Maximum | | 1 | . 0 | | 0 | 0 | | | | | | | # SAS K-MEANS CLUSTER ANALYSIS OF SYNTHETIC VALIDITY CTI DATA SEVENTEEN CLUSTER SOLUTION MEAN CLUSTER DISTANCES | | | | Cluster | =13 | | | |-----------------
---|-----------|-----------|-----------|-----------|-------------------------------| | | N | Mean | Std Dev | Minimum | Maximum | | | | 3 | 2.7916829 | 0.5931787 | 2.3922987 | 3.4732776 | | | | | | Cluster | =14 | | | | | N | Mean | Std Dev | Minimum | Maximum | | | | 1 | 0 | | 0 | 0 | | | | | | Cluster | =15 | | ල් රාජ අත හා සම රා ජ අ | | | N | Mean | Std Dev | Minimum | Maximum | | | | 1 | 0 | | 0 | 0 | | | ഹായും ക്ക് ഫോയോ | . 400 to 100 | | Cluster | =16 | | p = 0 0 0 0 0 | | | N | Mean | Std Dev | Minimum | Maximum | | | | 1 | 0 | | 0 | 0 | | | | | | Cluster | =17 | | | | | N | Mean | Std Dev | Minimum | Maximum | | | | 1 | 0 | • | 0 | 0 | | Table 3. SAS K-MEANS CLUSTER ANALYSIS OF SYNTHETIC VALIDITY CTI DATA SEVENTEEN CLUSTER SOLUTION MEAN CLUSTER PRINCIPAL COMPONENT SCORES | OBS | FREQ | LGEDIST | NEAREST | PRIN1 | PRIN2 | PRIN3 | PRIN4 | |---|---|---|--|--|---|--|---| | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 1
1
1
1
1
1
1
2
1
3
1 | 1.50805
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
1.64476
0.00000
3.47328
0.00000
0.00000 | 13
1
13
13
14
13
13
14
13
13
13
14
13
13
12 | 1.06559
1.76459
1.35409
-1.45349
0.87978
0.06958
-0.40553
0.29742
-0.31905
0.48131
0.65857
-0.67466
-0.36026
-0.34172
-2.02128
-1.72717 | -0.02192
-0.08171
-0.24669
-0.30776
-0.46008
-0.68118
-0.51579
4.01766
-0.61730
-0.40400
-0.49530
0.03274
-0.05751
-0.55708
0.41597
-0.09264 | -0.45427
-0.31079
-0.70428
-0.82867
-1.09979
1.10102
1.06233
0.31370
2.07215
-0.87607
0.93073
-0.79051
-0.13307
0.30183
-0.09448
-0.56586 | -0.57613
-0.68709
-0.33774
0.13695
-0.14361
1.14129
0.91681
1.35647
0.80407
1.15929
-0.29245
-0.22871
-0.36114
1.25862
-1.38610
-0.66921 | | OBS | PRIN5 | P | RIN6 | PRIN7 | PRIN8 | PRIN9 | PRIN10 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 0.4250
-1.7466
1.5146
-0.3423
1.6259
0.8455
0.4929
0.1715
-0.2953
-3.0424
-0.1138
-0.5634
0.0158
0.3253
-0.0213
0.2412 | 1 0.
5 2.
3 0.
9 -1.
4 0.
2 0.
4 0.
2 0.
5 -0.
2 0.
7 1.
0 -1.
4 -0.
3 -0. | 83895
00153
80503
63734
46725
08575
03094
34938
76095
08625 | -0.78898
0.74106
0.19689
-0.92621
-0.21287
2.02812
0.42721
-0.30882
-2.25117
0.62027
-0.34777
-0.29016
-0.25665
0.96856
0.58385
0.74618 | -0.32759
-0.27315
-0.22295
0.16350
-0.45958
-0.38311
-0.37540
-0.57616
-0.05229
-0.24751
0.41023
-0.52110
0.12486
-0.04972
-0.94271
-0.63031 | -0.52455
-1.22547
1.99702
-0.38058
1.24708
-0.40622
-0.76070
-0.10378
1.39465
2.00416
-0.78620
-0.89249
-0.52617
-0.35425
0.88692
0.23631 | -0.74904
-1.21985
0.55974
-0.05036
0.16719
0.29944
-1.68435
0.25632
-0.36091
0.28422
0.31054
0.89679
0.79857
1.14074
-2.30650
1.00246 | | OBS | PRIN11 | PR | IN12 | PRIN13 | PRIN14 | PRIN15 | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 0.2141 -0.0376 -0.0958 3.4305 0.0077 0.6149 -0.8788 0.2277 -0.3373 0.0091 0.4478 -2.0497 -0.5288 0.2263 -0.3433 -0.1761 | 0 0.1
2 0.5
5 -0.2
3 -1.6
6 -0.3
7 0.1
7 0.1
7 1.3
-0.4
7 0.8 | 58639
43744
34337
45125
68962
80742
25194
27224
50982
77061
12379
08015
59605
88374 | -0.45476
-1.33608
0.35718
0.57864
0.53384
-0.29945
1.89526
0.23404
-2.04015
0.95462
1.14309
0.41826
0.03722
-1.77801
-0.23389
-0.47824 | 0.69564
-0.21497
-2.06825
-0.67882
1.56368
0.18506
-0.67812
0.17302
0.06457
0.24195
0.68382
0.26454
-1.15145
-0.27759
-0.52184
2.27991 | -0.75838
1.70620
0.02871
0.55796
0.89599
-1.45998
1.77516
0.07488
0.29450
-0.52744
-0.94665
-1.00536
0.39294
-0.09764
-1.62093
1.57933 | | Table 3. SAS K-MEANS CLUSTER ANALYSIS OF SYNTHETIC VALIDITY CTI DATA SEVENTEEN CLUSTER SOLUTION MEAN CLUSTER PRINCIPAL COMPONENT SCORES | OBS | FREQ L | GEDIST | NEAREST | PRIN1 | PRIN2 | PRIN3 | PRIN4 | |---|---|---|--|--|---|--|---| | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 2 1
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 | .50805
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.64476
.00000
3.47328 | 13
13
13
14
13
13
14
13
13
14
13
13
14
13 | 1.06559
1.76459
1.35409
-1.45349
0.87978
0.06958
-0.40553
0.29742
-0.31905
0.48131
0.65857
-0.67466
-0.36026
-0.34172
-2.02128
-1.72717 | -0.02192
-0.08171
-0.24669
-0.30776
-0.46008
-0.68118
-0.51579
4.01766
-0.61730
-0.40400
-0.49530
0.03274
-0.05751
-0.55708
0.41597
-0.09264 | -0.45427
-0.31079
-0.70428
-0.82867
-1.09979
1.10102
1.06233
0.31370
2.07215
-0.87607
0.93073
-0.79051
-0.13307
0.30183
-0.09448
-0.56586 |
-0.57613
-0.68709
-0.33774
0.13695
-0.14361
1.14129
0.91681
1.35647
0.80407
1.15929
-0.29245
-0.22871
-0.36114
1.25862
-1.38610
-0.66921 | | OBS | PRIN5 | PR | IN6 | PRIN7 | PRIN8 | PRIN9 | PRIN10 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 0.42507
-1.74661
1.51465
-0.34233
1.62599
0.84554
0.49292
0.17154
-0.29533
-3.04245
-0.11383
-0.56343
0.01580
0.32534
-0.02133
0.24123 | 1 0.8
2.0
3 0.8
9 -1.6
4 0.4
2 0.0
4 0.0
2 0.3
5 -0.7
2 0.0
7 1.9
0 -1.2
4 -0.5
3 -0.5 | 3895
0153
0503
3734
6725
8575
3094
4938
6095
8625
7140
5014
1443 | -0.78898
0.74106
0.19689
-0.92621
-0.21287
2.02812
0.42721
-0.30882
-2.25117
0.62027
-0.34777
-0.29016
-0.25665
0.96856
0.58385
0.74618 | -0.32759 -0.27315 -0.22295 0.16350 -0.45958 -0.38311 -0.37540 -0.57616 -0.05229 -0.24751 0.41023 -0.52110 0.12486 -0.04972 -0.94271 -0.63031 | -0.52455
-1.22547
1.99702
-0.38058
1.24708
-0.40622
-0.76070
-0.10378
1.39465
2.00416
-0.78620
-0.89249
-0.52617
-0.35425
0.88692
0.23631 | -0.74904
-1.21985
0.55974
-0.05036
0.16719
0.29944
-1.68435
0.25632
-0.36091
0.28422
0.31054
0.89679
0.79857
1.14074
-2.30650
1.00246 | | OBS | PRIN11 | PRI | N12 | PRIN13 | PRIN14 | PRIN15 | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 0.2141
-0.0376
-0.0958
3.4305
0.0077
0.6149
-0.8788
0.2277
-0.3373
0.0091
0.4478
-2.0497
-0.5288
0.2263
-0.3433
-0.1761 | 0 0.5
2 0.4
5 -0.3
2 0.4
3 -1.6
6 -0.8
0 0.2
7 0.2
1 -0.5
7 1.7
3 -0.1
4 -0.0
8 0.8 | 7768
8639
3744
4337
58962
60742
57194
57224
60982
77061
2379
08015
69605
88374
84298 | -0.45476
-1.33608
0.35718
0.57864
0.53384
-0.29945
1.89526
0.23404
-2.04015
0.95462
1.14309
0.41826
0.03722
-1.77801
-0.23389
-0.47824 | 0.69564
-0.21497
-2.06825
-0.67882
1.56368
0.18506
-0.67812
0.17302
0.06457
0.24195
0.68382
0.26454
-1.15145
-0.27759
-0.52184
2.27991 | -0.75838
1.70620
0.02871
0.55796
0.89599
-1.45998
1.77516
0.07488
0.29450
-0.52744
-0.94665
-1.00536
0.39294
-0.09764
-1.62093
1.57933 | | # SAS K-MEANS CLUSTER ANALYSIS OF SYNTHETIC VALIDITY CTI DATA SEVENTEEN CLUSTER SOLUTION MEAN CLUSTER PRINCIPAL COMPONENT SCORES | OBS | FREQ | LGEDIST | NEAREST | PRIN1 | PRIN2 | PRIN3 | PRIN4 | |-----|---------|---------|---------|----------|---------|----------|----------| | 17 | 1 | 0.00000 | 13 | -0.27141 | 0.70482 | -0.13430 | -0.50050 | | OBS | PRINS | 5 PF | RIN6 | PRIN7 | PRIN8 | PRIN9 | PRIN10 | | 17 | 0.1244 | 11 0.2 | 22752 | 0.72054 | 4.03065 | 0.55734 | -0.50364 | | OBS | PRIN1 | L PRI | IN12 | PRIN13 | PRIN14 | PRIN15 | | | 17 | -0.3351 | LO -0.4 | 19346 | -0.29432 | 0.36233 | 0.02985 | |